Can the Best Defense Be a Good Offense?

Evolving (Mimicry) Attacks for Detector Vulnerability Testing Under a "Black-Box" Assumption

Hilmi Güneş Kayacık

The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' (I found it!) but 'That's funny ...' — Isaac Asimov

Introduction

Vulnerabilities

Stack buffer overflows in particular

- Defenses (intrusion detection)
 Static vs. Dynamic / Misuse vs. Anomaly
- Who defends the defenses?
 - General
 - Detector-specific

Misconfigurations, blind spots, limitations

An artificial arms race

- Automatic evasion of detectors under a 'black-box' assumption.
- EC under a multi-objective paradigm.
- Why??
 - Attackers are getting good at this, why shouldn't we??
 - Improving detectors through an "arms race"

	Detector	Apps	Evasion	Remarks	;	
Wagner02 [101]	Stide (pH)	ftpd	Model checking (A x M) (SEMI) (WB)	Recognizes p silent break-in provided.	reambles, assumes n. Attack	
Tan02Why [93]	Drovid	nic W	ork	<u> </u>	ansition to exploit. important.	
Tan02				I		
[92] Tan03 [95]	AutorBlack	natic vs. -box vs	Manual White-box		mal 2. hide in s serious 4. hide tack.	
Gao04 [31]	The more vou know, the easier Inking needed cost of P and R					
Kruegel05 [55]	the	the search. needed. specific.				
Giffin06 [33]	So, why black-box??					
Sparks08 [90]	graph)		Set of inputs. (ACTO) (BD)	string copy.	ed on how close gets to the unsafe	
Kayacik09 [43-49]	Stide, pH, pHsm, Markov Model, Neural Network	traceroute, ftpd, restore, samba	Using EC (AUTO) (BB)	1. BB 2. Anal 4. Multi-objec	ysis 3. Preambles tive	

c="hello"

Stack Overflows

From Wikipedia URL: <u>http://en.wikipedia.org/wiki/Stack_buffer_overflow</u> Slides for the PhD Defense

c="AAAAAAAAA AAAAAAAAAA x08\x35\xC0\ x80"

Stack Overflows x80"

From Wikipedia URL: <u>http://en.wikipedia.org/wiki/Stack_buffer_overflow</u> Slides for the PhD Defense

Stack Overflow Attacks

- Attacker needs to:
 - Inject shellcode
 Assembly code
 - Overwrite return address
 - Increase the chances
 No OPeration

Research Overview

- Suitable malicious buffer characteristics. *Misuse detection*
- 2. Code at ASM level. *Misuse detection*
- 3. Code at system call level.

Anomaly detection

Optimizing SOF Characteristics

- "Evolve" programs that will:
 - Determine RET, M, N
 - Assemble the malicious buffer.
- Snort
- Vulnerable app.

N x NOP M x RET

- Grammatical Evolution
- Instruction Set (grammar)
- Fitness calculation
- Diversity

Results

 Many undetectable attacks.

Attack with one NoOP.

Figure 6.5

ASM

Evolving Attacks at ASM Level

How to execute system calls in ASM?

int execve(const char *path, char *const
 argv[], char *const envp[])

- EAX = 0x0B i.e., the system call number of 'execve';
- 2. EBX --> '/bin/sh0' on the stack;
- ECX = NULL;
- 4. EDX = NULL;
- 5. Interrupt '0x80';

execve("/bin/sh")

• Linear GP

- Instruction set
- Fitness calculation

Results

Evolved attacks are undetectable.

Original Attack

```
xor eax, eax
cdq
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx, esp
push eax
push ebx
mov ecx, esp
mov al, 0x0b
int 0x80
```

Evolved Attack

- Different ordering
- Different instructions
- "Code bloat"

Evaded misuse detection push 0x68732f2f mul eax push ebx mul edx cdq cdq sub eax, eax mul edx push edx mov cl, 0x0b push edx dec ecx dec ecx mov ebx, esp push 0x6e69622f push edx push 0x68732f2f push 0x6e69622f mov ebx, esp mov ecx, edx cdq mul edx push ecx push ebx mov ecx, esp mov al, 0x0b int 0x80 push edx push 0x6e69622f mov dl, 0x0b

Evolving Attacks at System Call Level

- Black-box access
- System calls
- 4 vulnerable applications traceroute, restore, samba, ftpd

6 anomaly detectors

Stide, pH, pHsm1, pHsm2, Markov Model, Neural Network Attack = Preamble + Exploit

• Linear GP

- Instruction set
- Fitness Calculation
- Pareto Ranking

Attack = Preamble + Exploit

Results – Anomaly Rates and Delays

	Preamble	Exploit	Attack
Original		90.70%	87.49%
	Q1 010/	3029	4454
Mimicry	01.0170	0.10%	48.57%
	1425	1000	2425

Black numbers: anomaly rates. Red numbers: lengths (# syscalls).

	Preamble	Exploit	Attack
Original	1038	~10 ³⁹	~10 ³⁹
Mimicry	$\sim 10^{30}$	~101	~10 ³⁸

pH - restore

- 0% exploit **but...**
- P / E ratio.

- Preamble delay "freezes" the attack.
- 4 apps x 6 detectors.

Blue numbers: delays (seconds).

 Deploying attacks against different detectors.

Results – Attack Analysis

- Analysis of the black-box attacks.
 Application behavior is crucial (e.g. restore)
- Different detectors, different evasion.
 E.g. Against Stide E.g. Against Neural Net.

Detector	Characteristics
Stide	Syscall types
∎ pH	Syscall indices
∎ pHsm	# unique syscalls
MM	Repeating patterns
■ NN	Length

Conclusion

Formulating an arms race...

- A black-box EC approach for automatic evasion of detectors.
- Contributions.
 - Black-box access.
 - Evaluation of attacks.
 - Multi-objective.
 - Analysis of normal behavior.
 - Analysis of attacks.

Future Work

Vuln. Testing

Anomaly Det.

- Arms race
- Future attack vectors
- Additional detectors

Multi-objective

IA32

Viruses

Stack BOF

 Other overflow attacks

Research is what I'm doing when I don't know what I'm doing. — Wernher von Braun

- 1. Kayacik H. G., Zincir-Heywood A. N., Heywood M. I., Burschka S., "Testing Detector Parameterization using Evolutionary Exploit Generation", Proceedings of the 6th European Workshop on the Application of Nature inspired Techniques for Telecommunication Networks and other Parallel and Distributed Systems (EvoCOMNET-2009), In Press, Germany, April 2009.
- 2. Kayacik H. G., Zincir-Heywood A. N., Heywood M. I., Burschka S., "Generating Mimicry Attacks using Genetic Programming: A Benchmarking Study", Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Cyber Security (CICS-2009), Tennessee, in Press, USA, March 2009.
- 3. Kayacik H. G., Zincir-Heywood A. N., "Mimicry Attacks Demystified: What Can Attackers Do To Evade Detection?", Proceedings of the IEEE 6th International Conference on Privacy, Security and Trust (PST-2008), Fredericton, New Brunswick, Canada, October 2008. Received Best Paper Award
- 4. Kayacik H. G., Zincir-Heywood A. N., "On the Contribution of Preamble to Information Hiding in Mimicry Attacks", Proceedings of the 3rd IEEE International Symposium on Security in Networks and Distributed Systems (SSNDS-07), Niagara Falls, Canada, April 2007.
- 5. Kayacik H. G., Heywood M. I., Zincir-Heywood A. N., "Evolving Buffer Overflow Attacks with Detector Feedback", Proceedings of the 4th European Workshop on the application of Nature-inspired techniques to Telecommunication Networks and other Connected Systems (EvoCOMNET-2007), Valencia, Spain, April 2007.
- 6. Kayacik H. G., Zincir-Heywood A. N., Heywood M. I., "Automatically Evading IDS Using GP Authored Attacks", Proceedings of the IEEE Computational Intelligence for Security and Defense Applications (CISDA-2007), April 2007.
- 7. Kayacik H. G., Heywood M. I., Zincir-Heywood A. N., "On Evolving Buffer Overflow Attacks using Genetic Programming", Proceedings of the 11th Genetic and Evolutionary Computation Conference (GECCO-2006), Seattle, USA, July 2006.
- 8. Kayacik H. G., Zincir-Heywood A. N., "Using Self-Organizing Maps to Build an Attack Map for Forensic Analysis", Proceedings of the ACM 3rd International Conference on Privacy, Security and Trust (PST-2006), Markham, Ontario, Canada, October 2006.
- 9. Kayacik H. G., Heywood M. I., Zincir-Heywood A. N., "Evolving Successful Stack Overflow Attacks for Vulnerability Testing", Proceedings of the IEEE 21st Annual Computer Security Applications Conference (ACSAC-2005), December 2005.
- 10. Kayacik H. G., Zincir-Heywood A. N., Heywood M. I., "Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets", Proceedings of the Third Annual Conference on Privacy, Security and Trust (PST-2005), October 2005.
- 11. Kayacik, G. H., Zincir-Heywood, A. N., "Analysis of Three Intrusion Detection System Benchmark Datasets Using Machine Learning Algorithms", Proceedings of the IEEE Intelligence and Security Informatics Conference (ISI-2005), May 2005.
- 12. Kayacik, G. H., Zincir-Heywood, A. N., Heywood, M. I., "Intrusion Detection Systems", The Encyclopaedia of Multimedia Technology and Networking, Idea Group, April 2005, ISBN 1-59140-561-0.
- 13. Kayacik, G. H., Zincir-Heywood, A. N., "Generating Representative Traffic for Intrusion Detection System Benchmarking", Proceedings of the IEEE Communication Networks and Services Research Conference (CNSR-2005), May 2005.
- 14. Kayacik, G. H., Zincir-Heywood, A. N., Heywood, M. I., "On Dataset Biases in a Learning System with Minimum a Priori Information Intrusion Detection", Proceedings of the IEEE Communication Networks and Services Research (CNSR-2004), May 2004. Received Best Paper Award
- 15. Kayacik, G. H., Zincir-Heywood, A. N., "Case study of three open source security management tools", Proceedings of the IFIP/IEEE Eighth International Symposium on Integrated Network Management (IM-2003), July 2003.
- 16. Kayacik, G. H., Zincir-Heywood, A. N., Heywood, M. I., "On the capability of SOM based intrusion detection systems", Proceedings of the 2003 IEEE International Joint Conference on Neural Networks (IJCNN-2003), July 2003

Supplemental Slides

	Detector	Apps	Evasion	Remarks
Wagner02 [101]	Stide (pH)	ftpd	Model checking (A x M) (SEMI) (WB)	Recognizes preambles, assumes silent break-in. Attack provided.
Tan02Why [93]	Stide, Markov Detector	sendmail, ftpd, lpr	Use rare seqs to create foreign seqs (SEMI) (WB)	Recognizes transition to exploit. Says LFC not important.
Tan02 [92]	Stide	passwd, traceroute	Increase the foreign length (MAN) (WB)	
Tan03 [95]	Stide, t-stide	restore, tmpwatch, kernel, traceroute	Manually modify the attack (MAN) (WB)	 hide in normal 2. hide in blind spot hide as less serious 4. hide as another attack.
Gao04 [31]	Stide and "improvements"	httpd, ftpd	Exhaustive search on (WB) automaton (S, P, R) (SEMI)	PC \rightarrow Static linking needed Benefits and cost of P and R
Kruegel05 [55]	Stide and "improvements" (Indirectly)	apache, ftpd, imapd	Represent state as polynomial and symbolic execution (AUTO) (WB)	No floats. Static linking needed. Not detector specific.
Giffin06 [33]	Stide	traceroute	Use model checking on threat, OS, app model. (AUTO) (WB)	Model → Abstraction Parameters considered. Attack provided.
Sparks08 [90]	Markov Model (control flow graph)	Tftpd.exe	Uses GE, each individual is a set of inputs. (AUTO) (BB)	Fitness is based on how close the individual gets to the unsafe string copy.
Kayacik09	Stide, pH, pHsm, Markov Model, Neural Network	traceroute, ftpd, restore, samba	Using EC (AUTO) (BB)	 BB 2. Analysis 3. Preambles Multi-objective

	Detector	Apps	Evasion	Remarks
Wagner02	Stide (pH)	ftpd	Model checking (A x M) (SEMI) (WB)	Recognizes preambles, assumes silent break-in. Attack provided.
Tan02Why	Stide, Markov Detector	sendmail, ftpd, lpr	Use rare seqs to create foreign seqs (SEMI) (WB)	Recognizes transition to exploit. Says LFC not important.
Tan02	Stide	passwd, traceroute	Increase the foreign length (MAN) (WB)	
Tan03_2	Stide, t-stide	restore, tmpwatch, kernel, traceroute	Manually modify the attack (MAN) (WB)	 hide in normal 2. hide in blind spot hide as less serious 4. hide as another attack.
Tan03	Stide, Makov Detector	sendmail, ftp, lpr	1. Rare seqs 2. Minimal seq (SEMI) (WB)	Similar to Tan02Why, more explanation of methodology.
Gao04	Stide and "improvements"	httpd, ftpd	Exhaustive search on (WB) automaton (S, P, R) (SEMI)	PC \rightarrow Static linking needed Benefits and cost of P and R
Kruegel05	Stide and "improvements" (Indirectly)	apache, ftpd, imapd	Represent state as polynomial and symbolic execution (AUTO) (WB)	No floats. Static linking needed. Not detector specific.
Giffin06	Stide	traceroute	Use model checking on threat, OS, app model. (AUTO) (WB)	Model → Abstraction Parameters considered. Attack provided.
Kayacik09	Stide, pH, pHsm, Markov Model, Neural Network	traceroute, ftpd, restore, samba	Using EC (AUTO) (BB)	 BB 2. Analysis 3. Preambles Multi-objective

Training Parameters

	GE	GP1	GP2 (Pareto)
Crossover	0.9 (single pt.)	0.9 (page)	0.9 (cut-spl)
Mutation	0	0.5 (ind)	0.01 (inst-wise)
Swap	0	0.5	0.5
Selection	Generation	Tournament 4	Tournament 4
Stop Criteria	500 gens	50,000 tour	100,000 tour*
Population	200	500	500
Prog. Length	Const/560genes	10 pg x 3 inst	< 1000
Replacement	Parents if c>p	Worst 2 in tour	Worst 2 in pop
Training time	~7 hours	~6 hours	2 days
# Runs	10*	20	50
"phenotype"	C Grammar	ASM	System calls
Multiobjectives	Niching	Sub-goals	Pareto

Chapter 6

Grammar

```
code : exp
exp : detn detb deto alloc offsetc prel1 loop1 loop2 prel3 loop3 post3
digit : 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
number : digit + digit * 10 + digit * 100 + digit * 1000
detn : nsize = number ;
detb : bsize = nsize + number ;
deto : offset = number ;
alloc : buffer = malloc ( bsize );
offsetc: esp = sp();ret = esp - offset;
prel1 : ptr = buffer; addr_ptr = (long *) ptr;
loop1 : for ( i = 0 ; i < bsize ; i = i + 4 ) { exp1 };</pre>
loop2 : for ( i = 0 ; i < nsize ; i = i + 1 ) { exp2 };
prel3 : ptr = buffer + nsize;
loop3 : for ( i = 0 ; i < strlen (shellcode) ; i = i + 1 ) { exp3 };</pre>
post3 : buffer[ bsize - 1] = 0;
exp1 : *(addr_ptr++) = ret;
exp2 : buffer[ i ] = ' \setminus x90';
exp3 : *(ptr++) = shellcode[ i ];
응응
```


Vulnerable Program

```
int main(int argc, char *argv[])
{
    char buffer1[500];
    char buffer2[500];
    char buffer3[500];
    char buffer[500];
    printf("Vulnerable : Variable at
      Addr : 0x%x\n", buffer);
    strcpy(buffer, argv[1]);
```

return 0;

}

buffer buffer3 buffer2 buffer1 EIP

Grammatical Evolution

- Based on
 - Population of solutions (or individuals)
 - Survival of the fittest
 - Fitness function
 - Search operators
 - Mutation
 - Crossover

Fitness Sharing

- To encourage diversity (i.e. different NOP and RET sizes)
- Raw Fitness / Niche Count.
 - Number
 - Distance

Chapter 7

Linear GP

- As opposed to tree based.
- Individual is assembly code
- Instructions that are composed from a 2 byte opcode and two operands (1 byte).
- Fixed length individuals.

Fitness Function

1 0

_ . .

Fitness= 10	
Objective	# instructions
a. Stack contains "/bin/sh"?	1 to 3
b. EBX points to (a) ?	1
c. ECX points to arguments?	1 to 3
d. Is EDX null?	1
e. Interrupt executed?	1

GP Training Parameters

Parameter	Setting (Probability)
Crossover	Page Based (0.9)
Mutation	Uniform instruction wide (0.5)
Swap	Instruction swap within an individual (0.5)
Selection	Tournament of 4 indidivuals
Stop	At the end of 50,000 tournaments
Population	500 individuals each with 10 pages, 3 instructions per page
# Runs	20

Experiments

- Minimal Instruction Set
 - 5 instructions to build the attack
 - Establish a baseline
 - Additional objective to "strengthen" the attacks
- Extended Instruction Sets
 - Add arithmetic instructions
 - Add logic instructions

R: Register

Instruction Set

I: Immediate

CDQ		INC	R
PUSH	I	DEC	R
PUSH	R	MUL	R
MOV	R, R	DIV	R
MOV	R, I	AND	R, R
XOR	R, R	OR	R, R
	R, R	NOT	R
SUB	R. R		

Likelihood of Execution

Unique Individual Count

Unique Individual: Differs from others by at least one or more instruction

Intron Characteristics

- Attack starts in the first third of the code.
- Introns are mixed with attack instructions

	Evolved Program	Core Attack	Sub-goals
rison Betwee	PUSH 0x68732f2f MUL EAX PUSH EBX MUL EDX CDQ CDQ SUB EAX, EAX MUL EDX PUSH EDX MOV CL, 0x0b PUSH EDX DEC ECX DEC ECX MOV EBX, ESP	XOR EAX, EAX CDQ	(d) (d)
a a	PUSH UX66696221 PUSH EDX	PUSH EAX	(a)
Evolved	PUSH 0x68732121 PUSH 0x68732121 PUSH 0x6e69622f MOV EBX, ESP MOV ECX, EDX CDQ MUL EDX PUSH EDX PUSH EBX MOV ECX, ESP MOV AL, 0x0b INT 0x80	Same Same PUSH EAX (step 1) PUSH EAX (step 2) Same Same Same	(a) (b) (c) (c) (c) (c) (c) (e) (e)
	PUSH EDX PUSH 0x6e69622f MOV DL, 0x0b		

- Three instruction sets:
 - 1. Basic
 - 2. (1) + Arithmetic
 - 3. (2) + Logical

Hit Count

Hit = Attack deploys successfully

Chapters 8, 9 and 10

Linear GP with Pareto Ranking

- Individual is a sequence of system calls
 Can be considered a GA
- Instructions : 2 byte opcode and two operands (1 byte).
- Variable length individuals. (max:1000)
- Pareto Ranking

Pareto Ranking

Minimization problem

(rank 1 does not mean it dominates everything else)

1: (2, 4) 2: (2, 10) 3: (3, 4) 4: (4, 3) 5: (5, 10)

(2, 4) – nothing dominates it, so it is rank 1.
 (2, 10) – it is dominated by individual 1
 (3, 4) – it is dominated by individual 1
 (4, 3) – nothing dominates it, so it is rank 1

5: (5, 10) - it is dominated by individual 1

2: (2, 10) – dominated by nothing, so it is rank 2
3: (3, 4) – ditto
5: (5, 10) – dominated by individual 2

Example from: http://www.cosc.brocku.ca/Offerings/5P71/misc/Notes_MOP.pdf

Results – Search Space

Discussion of search space.

Black-box	White-box
10 ²³⁰¹	10 ^{10*}

Deploying attacks against different detectors.

BOF Characteristics	Evolving ASM Code	Evolving System calls
(10 ⁴) ³	137 ³⁰	200 ¹⁰⁰

Attack Success

.. open() ... write() ... close() ...

Password file modification exploit:

- Open password file
- Write the "magic text"
- Close password file

S = 0
IF the sequence contains open ("/etc/passwd")
THEN S += 1
IF the sequence contains write
 ("toor::0:0:root:/root:/bin/bash") THEN S += 1
IF the sequence contains close ("/etc/passwd")
 THEN S += 1
IF open precedes write THEN S += 1
IF write precedes close THEN S += 1

Anomaly Rate of the Original Preamble and Exploits

Table 8.10: Anomaly rate of the preamble component of the attacks (both original and mimicry)

	Stide	pН	pHsm	Markov Model	Neural Network
traceroute	22.22%	36.49%	77.78%	8.54%	22.04%
restore	77.82%	81.01%	93.67%	35.08%	13.29%
samba	3.57%	9.97%	100.00%	6.78%	6.34%
ftpd	19.04%	21.94%	14.30%	6.11%	6.88%

Table 8.11: Anomaly rate of the original exploits

	\mathbf{Stide}	pН	pHsm	Markov Model	Neural Network
traceroute	71.48%	73.91%	83.06%	47.89%	70.21%
restore	88.13%	90.70%	98.30%	48.84%	15.53%
samba	60.04%	60.51%	99.60%	25.53%	21.15%
ftpd	47.52%	47.85%	57.29%	13.65%	18.86%

Anomaly Rate of the Original Attacks

	Stide	pН	pHsm	Markov Model	Neural Network
traceroute	61.26%	66.27%	81.79%	38.78%	31.19%
restore	84.69%	87.49%	96.77%	44.26%	14.00%
samba	10.16%	16.02%	99.95%	9.03%	5.73%
ftpd	22.78%	25.54%	20.27%	7.15%	6.91%

Table 8.12: Anomaly rate of the original attacks

Anomaly Rates of the Evolved Exploits and Attacks

Table 8.13: Anomaly rate of the best mimicry exploits

	\mathbf{Stide}	pН	pHsm	pHsm (mask unknown)	Markov Model	Neural Networks
traceroute	16.67%	11.71%	0.00%	27.60%	0.10%	2.47%
restore	0.40%	0.10%	0.20%	0.31%	0.10%	2.90%
samba	0.50%	0.10%	0.00%	29.23%	0.10%	16.68%
ftpd	57.14%	0.10%	0.00%	35.55%	0.10%	3.46%

Table 8.14: Anomaly rate of the best mimicry attacks

	Stide	pН	$_{\rm pHsm}$	pHsm	Markov	Neural
				(mask	Model	Networks
				unknown)		
traceroute	10.96%	18.29%	2.71%	29.28%	0.20%	1.63%
restore	46.25%	48.57%	54.52%	57.92%	21.05%	5.60%
samba	3.00%	8.11%	7.36%	15.84%	5.45%	5.77%
ftpd	19.30%	16.11%	10.62%	20.19%	4.47%	1.26%

54

Delay of the Original Preamble and Exploits

Table 8.15: Delay associated with the preamble component of the attacks (both original and mimicry)

	Stide	pН	pHsm	Markov Model	Neural Network
traceroute	0	0.74	0.63	0	0
restore	0	1.90E + 38	1.01E + 39	0	0
samba	0	7.95E + 27	1.27E + 40	0	0
ftpd	0	5.26E + 30	8.03E + 17	0	0

Table 8.16: Delay associated with the original exploits

	Stide	pН	pHsm	Markov Model	Neural Network
traceroute	0	4.39E + 35	8.51E + 35	0	0
restore	0	1.66E + 39	3.93E + 39	0	0
samba	0	2.97E + 30	8.96E + 38	0	0
ftpd	0	3.78E + 22	4.89E + 25	0	0

Delay of the Original Attacks

Table 8.17: Delay associated with the original attacks

	Stide	pН	pHsm	Markov Model	Neural Network
traceroute	0	4.39E + 35	8.51E + 35	0	0
restore	0	1.85E + 39	4.96E + 39	0	0
samba	0	3.11E + 30	1.41E + 40	0	0
ftpd	0	5.26E + 30	4.89E + 25	0	0

Delay of the Evolved Exploits and Attacks

Table 8.18: Delay associated with the best mimicry exploits

	Stide	pН	pHsm	pHsm (mask unknown)	Markov Model	Neural Network
traceroute	0	1.11	0	1.50E + 14	0	0
restore	0	9.94	9.87	11.1	0	0
samba	0	9.94	0	7.37E+12	0	0

Table 8.19: Delay associated with the best mimicry attacks

	Stide	$_{\rm pH}$	$_{\rm pHsm}$	m pHsm	Markov	Neural
				(mask	Model	Network
				unknown)		
traceroute	0	0.55	0.44	0.44	0	0
restore	0	1.90E + 38	3.55E + 38	4.04E + 38	0	0
samba	0	7.95E + 27	1.59E + 20	1.53E + 21	0	0
ftpd	0	5.26E + 30	4.00E + 13	4.48E + 13	0	0

Exploit Lengths

Table 8.20: Best mimicry exploit lengths generated against five anomaly detectors in terms of system calls

	Stide	pН	pHsm	Markov Model	Neural Network
traceroute	34	118	1000	957	1000
restore	1000	1000	999	1000	1000
samba	1000	1000	1000	983	1000
ftpd	11	1000	994	1000	1000

Traceroute Attack Analysis Table

Target	Atta	Attack Characteristics			
Detector					
	ST:	kernel, file, memory, network			
Stide	SI:	min: 1, med: 2, max: 9			
	SU:	8			
	RP:	Pattern (gettimeofday sendto gettimeofday			
		select write) exists.			
	LN:	34 system calls			
	ST:	file, memory			
pH	SI:	min: 2, med: 6, max: 14			
	SU:	8			
	RP:	None.			
	LN:	118 system calls			
	ST:	kernel, file, memory			
pHsm	SI:	min: 1, med: 7, max: 10			
	SU:	8			
	RP:	Different combinations of mmap and open.			
	LN:	1000 system calls			
	ST:	kernel, file, memory			
Markov	SI:	min: 1, med: 2, max: 14			
Model	SU:	9			
	RP:	Different combinations of gettimeofday and write.			
	LN:	957 system calls			
	ST:	kernel, file, memory, network			
Neural	SI:	min: 1, med: 7, max: 22			
Network	SU:	20			
	RP:	None.			
	LN:	1000 system calls			

Restore Attack Analysis Table

1

Target	Attack Characteristics					
Detector						
	ST:	file				
Stide	SI:	min: 1, med: 1, max: 6				
	SU:	4				
	RP:	Different combinations of read and write.				
	LN:	1000 system calls				
	ST:	file				
$_{\rm pH}$	SI:	min: 1, med: 1, max: 11				
	SU:	6				
	RP:	Different combinations of read, write and lseek. Large				
		blocks of write.				
	LN:	1000 system calls				
	ST:	file, memory				
pHsm	SI:	min: 1, med: 1, max: 6				
	SU:	6				
	RP:	Different combinations of read, write and lseek.				
	LN:	999 system calls				
	ST:	kernel, file, memory				
Markov	SI:	min: 1, med: 2, max: 12				
Model	SU:	8				
	RP:	Different combinations of read, write and lseek.				
	LN:	1000 system calls				
	ST:	kernel, file, memory				
Neural	SI:	min: 1, med: 5, max: 20				
Network	SU:	19				
	RP:	None.				
	LN:	1000 system calls				

Samba Attack Analysis Table

	Target	Atta	ck Characteristics
	Detector		
1		ST:	file
	Stide	SI:	min: 1, med: 2, max: 23
_		SU:	6
		RP:	Different combinations of read and lseek. Large blocks
			of llseek.
		LN:	1000 system calls
		ST:	kernel, file, memory
	pH	SI:	min: 1, med: 6, max: 23
		SU:	9
		RP:	Different combinations of fcnt164, munmap and stat.
			Long blocks of write.
		LN:	1000 system calls
		ST:	kernel, file, memory
	pHsm	SI:	min: 1, med: 7, max: 23
		SU:	11
		RP:	None.
		LN:	1000 system calls
		ST:	kernel, file, memory
	Markov	SI:	min: 1, med: 7, max: 23
	Model	SU:	12
		RP:	Different combinations of fcnt164, munmap and stat.
		LN:	983 system calls
		ST:	kernel, file, memory, network
	Neural	SI:	min: 1, med: 8, max: 23
	Network	SU:	20
		RP:	None.
		LN:	1000 system calls

Ftpd Attack Analysis Table

Target	Atta	ck Characteristics
Detector		
	ST:	kernel, file, network
Stide	SI:	min: 4, med: 7, max: 16
	SU:	8
	RP:	None.
	LN:	11 system calls
	ST:	kernel, file
pH	SI:	min: 1, med: 5, max: 7
	SU:	5
	RP:	Different combinations of open, read, write and close.
		Long blocks of close.
	LN:	1000 system calls
	ST:	kernel, file, memory
pHsm	SI:	min: 1, med: 5, max: 11
	SU:	10
	RP:	Different combinations of open, read, write and close.
	LN:	994 system calls
	ST:	kernel, file, memory
Markov	SI:	min: 1, med: 4, max: 13
Model	SU:	10
	RP:	Different combinations of open, read, write, close,
		and rt_sigaction.
	LN:	1000 system calls
	ST:	kernel, file, memory, network
Neural	SI:	min: 1, med: 5, max: 20
Network	SU:	19
	RP:	None.
	LN:	1000 system calls

62

Stide Detector

- Immune system based
- Monitor System Calls
 A B D B A C B E F
- Apply a sliding window of *N*
- Training: Store patterns.
- Detection: Compare patterns
 A B C B A C B E F

3 / 4 inputs raises alarms.¹

<u>"Normal DB"</u>

Α	В	D	В	Α	С
В	D	В	Α	С	В
D	В	Α	С	В	Е
В	Α	С	В	Е	F

A B C B A C B C B A C B C B A C B E B A C B E F

pH (comparison with Stide)

						_
2	2	1	3	2	2	1

Training sequence

Current	Position 1	Position 2	Position 3	рН
1	{2}	{2}	{3}	
2	$\{2, 3\}$	$\{3, 1\}$	$\{1, 2\}$	
3	{1}	{2}	{2}	

Stide

	Current	Position 1	Position 2	Position 3
pattern 1	1	2	2	3
pattern 2	2	2	3	1
pattern 3	2	3	1	2
pattern 4	3	1	2	2

HMM Detector

- First order HMM
- Raise flags if transition was not seen.
- Anom. Rate = 100 %Flags

	A E	B D	B	AC	Β	DA	
--	-----	-----	---	----	---	----	--

ABCBACBDA

	states	А	В	С	D
rom	А	0	1	1	0
F	В	1	0	0	2
	С	0	1	0	0
	D	1	1	0	0

To

Auto-associative Neural Network

- One class
- Frequency as opposed to sequence
- Input / output layer:
 223 neurons
- Hidden layer: 15 neurons
- Train to produce same outputs as training inputs.