
HIERARCHICAL SELF ORGANIZING MAP BASED IDS

ON KDD BENCHMARK

By

Hilmi Güneş Kayacık

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER SCIENCE

AT

DALHOUSIE UNIVERSITY

HALIFAX, NOVA SCOTIA

c© Copyright by Hilmi G̈uneş Kayacık, 2003

DALHOUSIE UNIVERSITY

FACULTY OF

COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend

to the Faculty of Graduate Studies for acceptance a thesis entitled

“HIERARCHICAL SELF ORGANIZING MAP BASED IDS ON

KDD BENCHMARK ” by Hilmi G üneş Kayacıkin partial fulfillment of the

requirements for the degree ofMaster of Computer Science.

Dated:

Supervisors:
Dr. Nur Zincir-Heywood

Dr. Malcolm I. Heywood

Readers:
Dr. Raza Abidi

Dr. Murray Heggie

ii

DALHOUSIE UNIVERSITY

Date:

Author: Hilmi G üneş Kayacık

Title: HIERARCHICAL SELF ORGANIZING MAP BASED

IDS ON KDD BENCHMARK

Faculty: Computer Science

Degree:Master of Computer Science Convocation:May Year: 2003

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER
THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR
OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH
USE IS CLEARLY ACKNOWLEDGED.

iii

Contents

List of Tables vii

List of Figures x

Abstract xiii

Acknowledgements xiv

1 Introduction 1

2 Literature Survey 6

2.1 Learning System Approaches . 6

2.2 Signature Based Intrusion Detection . 20

2.2.1 Examples Signature Based Systems 21

2.2.2 Benchmarking Test Set-up and Procedures 23

2.2.3 Evaluation Results . 26

iv

2.3 Discussion . 30

3 Methodology 32

3.1 The Dataset . 32

3.1.1 Collected Data: DARPA 98 Dataset 33

3.1.2 Summarized Data: KDD 99 Dataset 34

3.2 Multi Level Hierarchy . 36

3.3 Pre-Processing and Clustering . 38

3.3.1 1st Level Pre-Processing . 38

3.3.2 2nd Level Pre-Processing . 40

3.3.3 3rd Level Pre-Processing . 40

4 Learning Algorithms 42

4.1 Self-Organizing Maps . 42

4.2 Potential Function Clustering . 48

5 Results 51

5.1 KDD 99 Dataset . 51

5.2 Training Parameters . 52

5.3 Experiments . 53

5.3.1 Experiments on Training Set Biases 54

v

5.3.2 Experiments on Third Layer Maps 60

5.3.3 Experiments on Feature Contribution 73

5.4 Comparisons . 77

6 Conclusions and Future Work 78

Appendix A KDD 99 Dataset Details 83

Appendix B Detailed Detection Rates 89

Appendix C U-Matrix Displays of the 2nd Level SOMs in Section 5.3.1 93

Appendix D U-Matrix and Labels of the 2nd Level SOMs in Section 5.3.3 95

Bibliography 99

vi

List of Tables

2.1 Complexity data of the three detection models 10

2.2 Acuracy of the KDD 99 winner on different categories 11

2.3 Performance summary of the KDD 99 winners. 13

2.4 Performance of the three learning algorithms on KDD 99 data 15

2.5 Summary of the confidence rules . 26

2.6 Number of detected attack instances in different categories compared with

their number of occurrences in 4th week 26

2.7 Detection confidence rules for each system 27

2.8 Distribution of triggered Cisco IOS signatures among attack related entries . 28

5.1 Basic Characteristics of the KDD dataset 52

5.2 SOM Training Parameters . 53

5.3 Shift Register Parameters . 53

5.4 Basic Characteristics of the three training datasets Employed 54

5.5 Potential Function Parameters . 54

vii

5.6 Test Set Results for the first training data set 56

5.7 Test Set Results for the Second training data set 57

5.8 Test Set Results for the third training data set 59

5.9 Performance of the three systems on different categories 59

5.10 Detection rate of new attacks for three systems 60

5.11 Count of Attack and Normal connections per 2nd layer candidate neuron . . 61

5.12 Test Set Results of second and third level hierarchies 72

5.13 Performance of two layer and three layer hierarchies on different categories 73

5.14 Detection rate of new attacks for two-layer and three-layer hierarchy 73

5.15 Contribution results on Corrected test set 75

5.16 Performance of the systems excluding one feature on different categories . . 75

5.17 Performance of the systems excluding one feature on new attacks 76

5.18 Recent Results on the KDD benchmark 77

5.19 Performance of the KDD 99 winner . 77

A.1 Label counts of the KDD 99 datasets . 83

A.2 Enumeration of the alphanumeric Protocol feature 85

A.3 Enumeration of the alphanumeric Service feature 85

A.4 Enumeration of the Bro Flag feature . 88

viii

B.1 Detection rates for each attack type for systems explained in section 5.3.1

and 5.3.2 . 89

B.2 Detection rates for each attack type for feature contribution experiments in

Section 5.3.3 . 90

ix

List of Figures

2.1 Decision tree for smurf attack [19] . 12

2.2 Network diagram of the benchmarking environment 24

2.3 Log file analysis in terms of number of entries 27

2.4 Analysis of detected attacks . 29

2.5 Performance of the evaluated systems . 30

3.1 Simplified version of DARPA 98 Simulation Network 33

3.2 Multi Layer SOM-Architecture . 37

3.3 Shift register with taps shown in white cells and intervals shown in gray cells 39

4.1 SOM in output space . 45

4.2 SOM before and after training in input space 45

4.3 U-Matrix of the Example SOM . 46

4.4 Hit histogram for the example SOM . 47

4.5 Labels of the example SOM . 48

x

5.1 Hit histogram of the second level map for the 10% KDD dataset 55

5.2 Neurons Labels of the Second Level Map trained on 10%KDD dataset . . . 56

5.3 Hit histogram of the second level map for the normal only 10% KDD dataset 56

5.4 Neurons Labels of the Second Level Map trained on normal only 10%KDD

dataset . 57

5.5 Hit histogram of the second level map for the 50/50 dataset 58

5.6 Neurons Labels of the Second Level Map for the 50/50 dataset 59

5.7 U-Matrix of the neuron 36 third level map 61

5.8 Hit histogram of the neuron 36 third level map 62

5.9 Neuron Labels of the neuron 36 third level map 62

5.10 U-Matrix of the neuron 4 third level map 63

5.11 Hit histogram of the neuron 4 third level map 63

5.12 Neuron Labels of the neuron 4 third level map 64

5.13 U-Matrix of the neuron 17 third level map 65

5.14 Hit histogram of the neuron 17 third level map 65

5.15 Neuron Labels of the neuron 17 third level map 66

5.16 U-Matrix of the neuron 18 third level map 67

5.17 Hit histogram of the neuron 18 third level map 67

5.18 Neuron Labels of the neuron 18 third level map 68

5.19 U-Matrix of the neuron 23 third level map 69

xi

5.20 Hit histogram of the neuron 23 third level map 69

5.21 Neuron Labels of the neuron 23 third level map 70

5.22 U-Matrix of the neuron 30 third level map 71

5.23 Hit histogram of the neuron 30 third level map 71

5.24 Neuron Labels of the neuron 30 third level map 72

C.1 U-Matrix of the second level map for the 10% KDD dataset 93

C.2 U-Matrix of the second level map for the normal only10% KDD dataset . . 94

C.3 U-Matrix of the second level map for the 50/50 dataset 94

D.1 U-matrix and labels for the baseline 36 dimensional second level map (Sys-

tem 1) . 95

D.2 U-matrix and labels for the duration excluded second level map 96

D.3 U-matrix and labels for the protocol excluded second level map 96

D.4 U-matrix and labels for the service excluded second level map 97

D.5 U-matrix and labels for the flag excluded second level map 97

D.6 U-matrix and labels for the source bytes excluded second level map 98

D.7 U-matrix and labels for the destination bytes excluded second level map . . 98

xii

Abstract

In this work, an architecture consisting entirely Self-Organizing Feature Maps is developed

for network based intrusion detection. The principle interest is to analyze just how far such

an approach can be taken in practice. To do so, the KDD benchmark dataset from the

International Knowledge Discovery and Data Mining Tools Competition is employed. In

this work, no content based feature is utilized. Experiments are performed on two-level

and three-level hierarchies, training set biases and the contribution of features to intrusion

detection. Results show that a hierarchical SOM intrusion detection system is as good as

the other learning based approaches that use content based features.

xiii

Acknowledgements

I would like to thank my supervisors Nur Zincir-Heywood and Malcolm Heywood for their

valuable help and support. Also I acknowledge the contribution of Telecom Applications

Research Alliance which provided the benchmarking environment for intrusion detection

evaluation.

xiv

Chapter 1

Introduction

Along with its numerous benefits, the Internet also created numerous ways to compromise

the security and stability of the systems connected to it. In 2002, 82094 incidents were re-

ported to CERT/CCc© while in 1999, there were 9859 reported incidents [10]. Fortunately,

policies and tools are being developed to provide increasingly efficient defense mecha-

nisms. Static defense mechanisms, which are analogous to the fences around the premises,

can provide a reasonable level of security. They are intended to prevent attacks from hap-

pening. Keeping software such as operating systems up-to-date and deploying firewalls at

entry points are examples of static defense solutions. Frequent software updates can pre-

vent the exploitation of security holes. Firewalls are crucial to improve the defense at the

entry level, however they are intended for access control rather than catching attackers.

No system is totally foolproof. Attackers are always one step ahead in finding security

holes in current systems. Therefore dynamic defense mechanisms such as intrusion detec-

tion systems should be combined with static defense mechanisms. When an attack is taking

place, it manifests itself in host audit data and/or in network traffic [11]. The purpose of

the intrusion detection system (IDS) is to act like a burglar alarm, which monitors the net-

work and the connected systems to find evidence of intrusion. Intrusion detection systems

complement static defense mechanisms by double-checking firewalls for any configuration

1

2

errors, and then catching the attacks that firewalls let in or never see (i.e. insider attacks).

Although they are not flawless, current intrusion detection systems are an essential part of

the formulation of an entire defense policy.

Different detection mechanisms can be employed to search for the evidence of intrusions.

Two major categories exist for detection mechanisms: misuse and anomaly detection. Mis-

use detection systems usea priori knowledge on attacks to look for attack traces. In other

words, they detect intrusions by knowing what the misuse is [27]. Signature (rule) based

systems are the most common examples of the misuse detection systems. In signature

based detection, attack signatures are sought in the monitored resource. Signature based

systems, by definition, are very accurate on known attacks which are included in their sig-

nature database. Moreover, since signatures are associated with specific misuse behavior,

it is easy to determine the attack type. However, their detection capabilities are limited to

those within signature database. As the new attacks are discovered, a signature database

requires continuous updating to include the new attack signatures.

Anomaly systems adopt the opposite approach, which is, to know what is normal, and then

find the deviations from the normal behavior. These deviations are considered as anomalies

or possible intrusions. Anomaly detection systems rely on knowledge of normal behavior

to detect any attacks. Thus attacks, including new ones are detected as long as the attack

behavior deviates sufficiently from the normal behavior. However, if the attack is similar to

the normal behavior, it may not be detected. Moreover, it is difficult to associate deviations

with specific attacks. As the users change their behavior, normal behavior should be re-

defined.

According to the resources they monitor, intrusion detection systems are divided into two

categories. Host based intrusion detection systems monitor host resources for intrusion

traces whereas network based intrusion detection systems try to find intrusion signs in the

network data. The current trend in intrusion detection is to combine both host based and

network based information to develop hybrid systems and therefore not rely on only one

methodology.

3

A host based intrusion detection system monitors resources such as system logs, file sys-

tems, processor and disk resources. Example signs of intrusion on host resources are critical

file modifications, segmentation fault errors recorded in logs, crashed services or extensive

usage of the processors. An advantage of host based intrusion detection over network based

intrusion detection is it can detect attacks, which are transmitted in an encrypted form over

the network.

Network based intrusion detection systems inspect the packets passing through the network

for intrusions signs. The amount of data passing through the network stream is extensive,

therefore network based intrusion systems can be deployed on various locations of the

network rather than on a global point from which all network traffic can be inspected. De-

pending on the amount of monitored data, a network based intrusion detection system can

inspect only packet headers as well as the whole packet including the content. When de-

ploying content-based attacks (e.g. a malicious URL to crash a buggy web server), intruders

can evade intrusion detection systems by fragmenting the content into smaller packets. This

causes intrusion detection systems to see one piece of the content at a time. Thus, network

based intrusion detections systems, which perform content inspection, need to assemble

the received packets and maintain state information of the open connections.

Intrusion detection systems have three common problems: speed, accuracy and adaptabil-

ity. The speed problem arises from the extensive amount of data that intrusion detection

systems need to monitor in order to perceive the entire situation. Detection relies on finding

evidence of attacks in monitored data and responding in a timely fashion. Therefore col-

lecting sufficient and reliable data without introducing overheads is an important issue [27].

In today’s network technology where gigabit Ethernet is becoming more affordable, exist-

ing systems face significant challenges merely to maintain pace with current data streams.

In the case of signature-based systems, signature databases are optimized for fast signature

search. Distributing the intrusion detection process among different nodes in the network

will also reduce the amount of monitored data seen by any sensor, where such a scheme is

a necessity in switched network environments.

4

When measuring the performance of intrusion detection systems, the detection and false

positive rates are used to summarize different characteristics of classification accuracy. In

particular; false positives can be defined as the alarms that are raised from the legitimate

activity. False negatives are the attacks, which are not detected by the system. An intrusion

detection system gets more accurate as it detects more attacks and raises fewer false alarms.

In today’s intrusion detection systems, human input is essential to maintain the accuracy

of the system. In case of signature based systems, as new attacks are discovered, security

experts examine the attacks to create corresponding detection signatures. In the case of

anomaly systems, experts are needed to define the normal behavior. This also brings us

to the adaptability problem. The capability of the current intrusion detection systems for

adaptation is very limited. This makes them inefficient in detecting new or unknown attacks

or adapting to changing environments (i.e. human intervention is always required).

Incorporation of learning algorithms provide a potential solution for the adaptation and

accuracy issues of the intrusion detection problem [3, 19, 1, 15, 42, 12, 33]. Specifically

statistical and/or mathematical models are used to discover patterns in the input data. In

the case of intrusion detection, learning means discovering patterns of normal behavior or

attacks. Learning algorithms have a training phase where they mathematically ’learn’ the

patterns in the input dataset. The input dataset is also called the training set which should

contain sufficient and representative instances of the patterns being discovered. A dataset

instance is composed of features, which describe the dataset instance. Learned patterns can

be used to make predictions on a new dataset instance based on its diversity from normal

patterns or its similarity to known attack patterns or a combination of both. According to the

learning method employed learning algorithms are typically supervised or unsupervised. In

supervised learning, the learning algorithm is presented a set of classified (or labeled) in-

stances and is expected to identify a way of predicting the new unclassified instances. On

the other hand, unsupervised learning involves searching for associations between the fea-

tures without making use of classes or labels [20]. In this work, Self Organizing Maps,

which is an unsupervised learning algorithm, is used to build a hierarchy for intrusion de-

tection. In network based intrusion detection, amount of the data monitored is extensive.

5

Therefore, we adopt a divide and conquer approach and develop a multi level Self Orga-

nizing Map hierarchy in which the amount of monitored data is reduced on higher levels

without any performance degradation. We are interested in establishing how far a hierarchy

of Self Organizing Maps can be taken, whilst only utilizing minimuma priori information.

Firstly, the work only uses the six basic features derived from individual TCP connections

where the original dataset consists of 41 features per connection. Secondly, in order to

provide for the representation of sequence, feature integration and resolution, three SOM

”levels” are employed, where each level has a specific structure and purpose. In first level,

Six Self-Organizing Feature Maps (SOM) are built, one for each input feature and designed

to express sequence. The second level of the hierarchy integrates the information from each

first level - feature specific - SOM. A third layer is selectively built for better resolution of

second layer neurons that respond to both attack and normal connections. Neurons in the

second and third layers are therefore labeled using the training set, but the training process

itself is entirely unsupervised.

The organization of the thesis is as follows; traditional and learning based approaches to

intrusion detection are discussed in Chapter 2. Moreover, all learning systems discussed

utilize KDD competition dataset which is derived from DARPA dataset. We therefore

benchmark several signature based intrusion detection systems on a DARPA dataset for the

purpose of comparison, where signature based systems represent the current commercial

norm [14].Chapter 3 provides the motivation for the proposed hierarchy of Self Organizing

Maps for intrusion detection and Chapter 4 details the corresponding learning algorithms.

Several experiments were performed on the proposed hierarchy and the results will be dis-

cussed in Chapter 5 [15]. Chapter 6 provides the conclusion remarks and future directions

for this work. The details of the dataset employed in this work are provided in Appendix

A. In addition, Appendix B provides the detailed performance results of the proposed hi-

erarchy. Visualizations of the resulting SOMs from different experiments are shown in

Appendix C and D.

Chapter 2

Literature Survey

Both learning based and signature based intrusion detection systems have their own ad-

vantages and disadvantages. For better intrusion detection, signature based systems can be

combined with learning systems to minimize the shortcomings of each other. In addition,

designers intrusion detection systems should examine the disadvantages of the both and try

to minimize them in new systems. Selected learning approaches, which employ exactly

the same dataset as this work, will be discussed in Section 2.1. Signature based intrusion

detection systems are discussed with three of the most commonly used intrusion detection

systems, Section 2.2.

2.1 Learning System Approaches

As indicated before, most of the current intrusion detection systems are based on a signature-

based approach and need frequent signature updates. Learning algorithms have generaliza-

tion capabilities that have the potential to capture normal and intrusion behavior from data.

Thus, the generic objective is to detect novel attacks by determining deviations from the

normal behavior or finding similarities with known intrusions. To assess different learning

6

7

approaches, an intrusion detection dataset is provided within The International Knowledge

Discovery and Data Mining Tools Competition in 1999 [17]. This benchmark provides the

only labeled dataset for comparing IDS systems, which we are aware of. The dataset con-

tains 5,000,000 network connection records. The training portion of the dataset contains

494,021 connections of which 20% are normal. Each connection record contains 41 inde-

pendent fields and a label (normal or type of attack). Each attack belongs to one of the four

attack categories: user to root, remote to local, probe, and denial of service. Details of the

KDD 99 dataset will be discussed later in Section 3.1.2.

The competitors of KDD 99 were asked to predict the class of each connection in a test

set containing 311,029 connection records. In total, 24 competitors submitted their results

and three winners were selected. This dataset is still being used by researches working on

learning based intrusion detection systems [3, 19, 1, 15, 42, 12, 33]. The winners of the

KDD 99 classifier competition and other selected learning approaches, which make use

of KDD 99 dataset, will be discussed in the following with performance comparisons in

Tables 2.3 and 2.4. We begin, however by discussing a data mining approach, where this is

central in the construction of the connection based features utilized by the KDD 99 dataset.

A Data Mining Framework for IDS

Attack behavior naturally leaves traces in audit data [11]. A critical decision of the intrusion

detection design is to carefully select the raw audit source, which contains attack traces.

Moreover raw audit data might require pre-processing, which involves summarizing the

raw audit data to higher-level events such as network connection or host session. This work

[42] aims to formulate a framework for intrusion detection system design. ”The central

idea is to utilize auditing programs to extract an extensive set of features that describe each

network connection or host session, and apply data mining programs to learn rules that

accurately capture the behavior of intrusions and normal activities.” [42]

For summarization purposes, the Bro [41] network analyzer is deployed to extract fea-

tures from raw recorded network traffic (tcpdump) data in DARPA 98 dataset. As a result,

tcpdump data is summarized to network connections where each connection has a set of

8

intrinsic attributes (hereafter called intrinsic features). Content of the telnet sessions were

also examined and summarized to user command records where each record contains the

timestamp (am, pm, night), host name, command name and the set of arguments. In ad-

dition to telnet sessions, contents of other TCP connections (e.g. ftp, smtp, etc.) were

inspected. As a result, content based features such as the number of failed logins, whether

the login user is root or not, whether critical files (e.g. /etc/passwd) were accessed or not

are derived. Three different types of data mining algorithms were applied to detect intru-

sions and to construct new features from the existing ones. Types of data mining algorithms

employed are classification, link analysis and sequence analysis.

Classification involves applying classifier algorithms on collected instances of normal and

attack behavior to predict the new unseen audit data. A Decision tree, employed in the three

winning approaches, is an example of such a classifier. In [42], for classification, RIPPER

was used. RIPPER is a rule learner, which generates rules from the input data to classify

unseen data. When RIPPER was applied to content based telnet data, the rules derived for

password guessing and buffer overflow attacks are as follows:

If Failed Logins > 6 then it is a guess password attack.

If (Hot indicator =3) and (compromised conditions =2) and

(root shell is obtained) then it is a buffer overflow attack.

Link Analysis ”determines the relations between the fields in the database records” [42].

For instance, a user might associate ”emacs” command with ”C” files. Association rules

approach is used for link analysis. This approach mines the input data to derive multi

feature correlations. For example the resulting association rule for normal behavior of a

secretary derived from the content-based telnet data is as follows:

(Command is vi) and (Time is morning) and (Hostname is Pascal)

and (argument is tex)

9

Sequence analysis involves discovering which events are actually related. Sequence anal-

ysis plays an important role in determining temporal features. In addition to the above in-

trinsic and content-based features explained before, sequence analysis is applied to intrinsic

features of the connection records to derive temporal and statistical features. Examples of

the temporal features are ”number of connections that to same destination host in the past

2 seconds” and ”number of requests to the same service in the past 2 seconds”. These two

features cover the attacks targeted to same host or to same service on all hosts.

The work [42] applied data mining for both misuse detection and anomaly detection. In

the case of misuse detection, a combination of features from the three categories was used

to detect different intrusions. To this end three detection models were formed. In the

”traffic” model, only intrinsic features were used. This means host based and content based

awareness were not implemented. In host-based ”traffic” model, temporal features were

used with intrinsic features. In ”content” model, content-based features were used with

intrinsic features. Meta-learning was then used as the classifier for each of the three models.

The predictions of the three models were combined with the real data label. The RIPPER

classifier was then applied to learn rules that combine evidence from all three models.

The resulting classifier used content-based rules to detect content-based attacks such as

user-to-root and remote-to-local. Intrinsic features and host-based features were used to

detect denial of service and probe attacks, which have distinct temporal features. Table 2.1

details the rule counts for each meta-classifier. For the traffic model, 9 additional temporal

and statistical features were used in RIPPER rules. Similarly for the host-based model, 5

additional temporal and statistical features were used in RIPPER rules. This also shows that

new temporal and statistical features contribute to rule construction. Overall performance

of the system on old (encountered in training set) attacks was 80.2% and, on new attacks

(not encountered in training set), overall performance was 37.7%.

A user anomaly detection system was also developed from the command records. Six user

(namely, 1 system admin, 2 programmers, 1 secretary and 2 managers) profiles were de-

fined. User command records were then mined to compare with the defined user profile

10

features in records # of rules # features in rules
Content-Based 22 55 11

Traffic 20 26 4+9
Host-Based 14 8 1+5

Table 2.1: Complexity data of the three detection models

patterns and a similarity score calculated [42]. For example, if the user executedn com-

mands andm out ofn comments match with the profile of the user, then the similarity score

is (m/n). Lower similarly scores correspond to anomalous behavior. Resulting anomaly

system detected some anomalies such as: ”secretary logs in at night”, ”system admin be-

comes the programmer”, and ”manager becomes the system admin”.

Thus, pre-processing of the raw data is very important and should not be overlooked. The

framework explained in this work is a comprehensive resource on constructing features,

which can be used in learning based intrusion detection system designs. Authors of [42]

participated in pre-processing of the DARPA 98 network data to form the KDD 99 network

connection data on which the following systems are based.

1st Winner of the KDD 99 IDS competition

The winning approach [3] is a decision tree based intrusion detection system. Decision tree

based learning utilize a divide-and-conquer approach to determine which attribute of the

data best separates the classes. Every node in the decision tree tests a particular attribute,

and in this way determine which child node will be tested next. Dataset instances are fed

to the decision tree from the root node. When a leaf node is reached, the data instance is

classified with the label of the leaf [20].

Initially, the author of [3] experimented on C5 (decision trees, rules, boosted trees), RIP-

PER, naive bayes, nearest neighbor and some neural network approaches. RIPPER, neural

networks and nearest neighbor algorithms were more computationally intensive than the

others and therefore they were not selected as the learning algorithm. Decision trees per-

formed better than the naive bayes on initial experiments; therefore decision trees (namely

C5) were selected as the learning algorithm.

11

In this approach, an ensemble of 50x10 C5 decision trees was used as the predictor. The

constructed ensemble can be summarized as ”cost-sensitive bagged boosting” [3]. Dupli-

cate dataset instances were removeda priori, which also changed the distribution of the

dataset. Training is performed by first partitioning the original dataset of around 5 million

instances into 50 subsets. However, the sampling procedure for subset formulation was bi-

ased. A sample always included all rare user-to-root, remote-to-local attack class instances

and some of the remaining dominant normal, denial of service, probe class instances. For

each of the 50 subsets, an ensemble of 10 decision trees was built by using C5’s error-cost

and boosting options. Accuracy results of this work for different categories are detailed in

Table 2.2.

Category Accuracy
Normal 99.50%

Probe 83.30%
Denial of Service 97.10%

User to Root 13.20%
Remote to Local 8.40%

Table 2.2: Acuracy of the KDD 99 winner on different categories

2nd Winner of the KDD 99 IDS competition

The second placed winner [19] applied a data-mining tool called Kernel Miner. Kernel

Miner divides the global model into inter-related and inter-consistent sub models. As a

result, Kernel Miner constructs the set of locally optimal decision trees from which it selects

the optimal subset of trees used for predicting classes. In this approach, decision trees were

built for different categories as well as different attack types. The resulting decision tree

group contained 218 decision trees for categories and 537 decision trees for specific attack

types. Figure 2.1 shows the decision tree built for the ”smurf” denial of service attack.

In case of the ”smurf” tree, as we take the ”yes” branch on every node, more ”smurf” in-

stances are covered and more other instances are left out. The last leaf on the bottom, which

is reached by the ”yes” branch, covers all the ”smurf” instances in the dataset. Decision

trees can also be used to construct rules for specific attacks. The ”smurf” decision tree,

12

519 < Source Bytes <1032

Service is ecr_i

 Records = 208762
 Smurf = 0
 Probability = 0

 Records = 280790
 Smurf = 280790

 Probability = 1

 Records = 4469
 Smurf = 0

 Probability = 0

Records = 494021

Smurf = 280790
Probability = 0.568

 Records = 285259
 Smurf = 280790
 Probability = 0.984

YES

YES

NO

NO

Figure 2.1: Decision tree for smurf attack [19]

which covers all ”smurf” attacks, can be converted to a rule:

If (Source Bytes is between 519 and 1032) and (service type is

ecr_i) then the connection is a smurf attack.

3rd Winner of the KDD 99 IDS competition

The third placed approach was based on voting decision trees using ”pipes” in the potential

space [1]. Learning is achieved in two stages. In the first stage 13 decision trees were

built based on a subset of training data. The objective of the first stage was to separate

normal connections from the attacks. The key idea of the second stage was denoted ”one

against the rest” where one class was separated from others using 5 decision trees. Each

connection in the dataset was assigned a vector of proximity to the five categories (including

normal). This representation of the connection is called the potential space whereas the

multidimensional interval on proximity vectors is called a ”pipe”[1]. Prediction was then

13

performed on potential space. In this approach, 10% of the dataset was employed for

training. Training set is randomly divided into three parts: 25% for tree generation. 25%

for tree tuning and the remaining 50% for estimating tree quality. The performance results

of the third winner were not available in their short paper [1]. However [6] indicates that

all the three winners performed close to each other. Table 2.3 summarizes the performance

of the winners in terms of percentage of false alarms and attack detection on test set.

False Alarm Detection
1st Winner 0.50% 91%
2nd Winner 0.58% 91.30%

Table 2.3: Performance summary of the KDD 99 winners.

Anomaly Detection with unlabeled data

Most of the current intrusion detection systems and supervised learning algorithms require

labeled data to determine the behavior of attacks. Labeling involves marking each dataset

instance as an attack or normal, where this requires extensive domain knowledge over

extensive periods of time. The framework proposed in [12] utilizes the data in an unlabeled

format to develop anomaly systems. An unsupervised anomaly system approach was based

on two basic assumptions. First, the ratio of attack instances should be significantly less

than the ratio of normal instances (e.g. 1% to 99%). Second, anomalous behavior should

be separable from normal behavior.

This framework first maps the audit stream data to a feature space. ”The choice of feature

space is application specific. Therefore performance greatly depends on the ability of the

feature space to capture information relevant to the application.” [12] Anomalous behavior

is separated from the normal behavior in the feature space where the main property of a

feature space is a dot product operation, defined between data sample and each candidate

feature. To this end, a data-dependent normalized feature mapping was applied to the KDD

99 network data and an additional spectrum kernel map was applied to DARPA 99 system

call trace data. Mathematical treatment of the feature mapping approaches is provided in

[12]. After mapping the raw data to a feature space, outliers were detected by applying

14

three different learning algorithms, which examine the distances between the points in the

feature space.

The first learning algorithm is a cluster based estimation algorithm. For each point, the

number of points within a specified radiusw of the selected point is calculated. Points in

dense regions will have high-density values whereas outlier points have low-density. The

algorithm works as follows.

1. Assign the first point as the first cluster

2. Sample another point

3. If the point is within thew radius of a cluster center, then add it to that cluster,

otherwise create a new cluster

4. Repeat steps 2 and 3 until all points are processed

Resulting clusters were sorted based on their size. The points in the smaller clusters were

labeled as an anomaly. The computational complexity of the algorithm was reported to be

O(cn) wherec is the number of clusters andn is the number of points in the dataset.

K-Nearest neighbor algorithm was the second clustering algorithm employed by [12]. This

classifies new instances based on the closest instance in the training set. In case of the

k-nearest algorithm, the majority class of the closestk neighbors determines the class [20].

The variation of the algorithm used in [12] is that for each point, the sum of the distances

between the point and itsk nearest neighbors are calculated. A point in a dense region

will be close to its neighbors, and therefore the corresponding sum will be small. The

complexity of thek-nearest neighbor algorithm isO(n2), which is impractical for intrusion

detection applications [12]. Therefore results from the first cluster-based estimation were

used to speed up the clustering process. However the amount of speedup is not reported in

the paper [12].

15

The third algorithm employed by [12] is the support vector machine (SVM) method, where

this is used to estimate the region where most of the points are located. Basic SVM maps

the feature space into a second feature space where linear separation between two classes

becomes possible. The objective of the SVM algorithm is to find a hyper plane (also called

decision surface) to separate classes by maximizing the distance between them. Standard

SVM is a supervised learning algorithm. However this work [12] employed an unsuper-

vised variation of the SVM, which attempts to separate the entire training set from the

origin. This is achieved ”by solving a quadratic program that penalizes any points not sep-

arated from the origin while simultaneously trying to maximize the hyper plane from the

origin” [12]. Points that are on the same side of the hyper plane with the origin are labeled

as normal and the points that are on the other side are labeled as anomaly.

Authors used KDD 99 data to create a dataset, which contains 1 to 1.5% attacks and 98.5 to

99% normal traffic. System call data is taken from the DARPA 99 dataset, which includes

the data collected by the basic security module of a Solaris machine in the DARPA 99

network. Among all system calls in three weeks of data, ’eject’ and ’ps’ system calls were

examined. For different datasets, different parameters were used. For example in the case

of a cluster-based estimation algorithm, radius is selected as 40 for network data, 5 for

’eject’ system call traces and 10 for ’ps’ traces. Fork-nearest neighbor algorithm,k is

selected as 10,000 for network data, 2 for ’eject’ system calls and 15 for ’ps’ system calls.

Selected performance results of the algorithms on KDD 99 data where detection rate is

maximum are detailed in Table 2.4. The results listed in Table 2.4 will also be used to

compare our system with other learning algorithm based approaches.

Algorithm False Alarm Detection
Cluster Based 93% 10%

K-Nearest Neighbor 91% 8%
SVM 98% 10%

Table 2.4: Performance of the three learning algorithms on KDD 99 data

This approach proposes a solution to use with any data without first labeling them. Al-

though it eliminates the need for labels, collecting and isolating normal behavior may not

16

be easy on real world systems. Moreover, as indicated above, each dataset has a different

set of learning parameters that are determined by usinga priori knowledge.

Classifying rare classes

As Table 2.2 shows; even the first placed KDD competition approach suffers from low

detection rates of rare (e.g. r2l) attacks. The work of [33] directly addresses the problem

of detecting rare deviations. For example password guessing does not require many con-

nections therefore its occurrence is rare. The classifier proposed by [33] aims to solve the

problem of insignificant coverage rules created by some classifiers such as RIPPER and

C4.5. These small coverage rules result from the tight accuracy constraints of the current

classifiers. Thus, [33] has a two-phase classification, which relaxes accuracy constraints.

The key point of the work is it conquers the objectives of high detection rate and low false

alarm rates separately. Rules are generated in two phases.

In the first phase, P-rules are generated which predict the presence of the target class. P

rules are added as long as the contribution of the rule (in terms of both rule coverage and

accuracy) is within pre-defined limits. P-rules can cover some dataset instances, which

do not belong to the target class. These instances introduce false alarms. In the second

phase, N-rules are generated which predict the absence of the target class. Significance of

the N-rules is they remove the false alarm effect of the P-rules. For prediction (whether

attack or not), P-rules and N-rules are sorted according to their significance (i.e. the order

they are generated). P-rules are then applied to the new unseen instance. If no P-rules

cover the instance then the prediction is false. If one or more P-rules cover the instance

then the first P-rule is accepted. After which, N-rules are applied to the instance. The first

N-rule that applies is selected. If a P-rule covers the instance and no N-rules apply then the

prediction is true. However [33] aims to predict classes with a probabilistic score rather

than a true/false prediction. The motivation for probabilistic prediction is that a given

N-rule might be effective on removing the false alarm effect of a specific set of P-rules.

Therefore, each P-rule N-rule combination has a different probability of prediction. If the

probability is greater than 0.5, prediction is considered ’true’.

17

The algorithm has two control parameters. The first one defines the minimum class cov-

erage in P-Phase and the second is used to control the rule growth in N-Phase. In [33],

among other datasets, KDD 99 network data was also used as a rare class source. Resulting

predictor can detect user-to-root attacks with up to 10.4% whereas the detection rate of the

winner for this category is 8.4%. Moreover, probe attacks, which can be considered as a

minority in KDD 99 dataset, can be detected up to 87.5% whereas the detection rate of the

winner in the original KDD competition was 83.3% for this category.

Neural Network based approaches

In [7], Self-Organizing Map was combined with Resilient Propagation Neural Network

(RPROP) for intrusion detection. SOM was used for clustering and visualization whereas

RPROP was used to classify normal patterns and intrusions. Unlike KDD 99 Intrusion

detection dataset, the dataset employed in [7] is not a benchmarking dataset. It consisted of

normal connections and three specific attacks (namely, a SYN flood attack called neptune,

a port scan attack called portsweep and a probe called satan. Data patterns containing

normal connections and three attack classes were divided into eight subsets and a SOM

was trained with each subset. Neuron weights from the eight resulting SOMs were then

fed to the three-layer PRPROP neural network where classification takes place at the third

(highest) level. Since the dataset is not a benchmarking dataset, it is impossible to compare

the results with other approaches.

In [21], a modified version of Cerebellar Model Articulation Controller (CMAC) neural

network [24] was employed. The CMAC neural network is a three layer feed forward form

of a neural network, which produces input-output mappings. One of the key advantages of

CMAC neural network is it learns new patterns without complete re-training. The system

was presented ping flood attack after being trained with normal behavior. When the system

is tested on ping flood attack, the high detection rate (98%) showed that the system is able

to learn new behavior (in this case an attack behavior). Moreover, when the system is tested

with new (UDP storm) attack, it also achieved high detection rate for this attack (98%).

Another neural network based approach involves a Multi Level Perceptron architecture

18

that consisted of four layers [8]. The training algorithm involved using a back propagation

algorithm. Training and test data was collected from RealSecure network monitor from

Internet Security Systems therefore it is not a benchmarking dataset. The training data

contained attacks therefore the resulting system is a misuse detection system. Although

without performance details, system was reported to detect attacks in the test data, which

also contained normal connections [8].

Self-Organizing Map based approaches

Although different packet headers contain different amount of information, network traffic

is summarized into connections consisting of 41 features in KDD 99 dataset. The general

idea of [4] was to employ different Self-Organizing Maps for different protocols to handle

the heterogeneous traffic. Protocols can be from any OSI layer such as IP from the third

OSI layer or TCP from the fourth OSI layer. In this approach a SOM was trained with the

normal behavior of a protocol, which therefore specializes on that protocol. SOMs were

arranged according to their location in OSI layers. Anomalous behavior was detected by

calculating the distance of the input data to neurons of the SOM. Before each SOM, an

analyzer stack was employed to summarize traffic of each protocol individually and derive

the input to the SOM. To this end, three layers were employed in [4].

At the first layer, the IP stack SOM examined all IP traffic. Then, two specialist SOMs

(namely TCP and UDP) were employed to examine the traffic on the second layer. Simi-

larly, based on the requested service, different SOMs were employed in the third layer such

as HTTP, DNS, SMTP or Telnet. This way, the amount of data examined by SOMs was

reduced in higher layers. In [4], DNS traffic was used to demonstrate the capabilities of

the architecture. The architecture was trained on 30 DNS packets, which -when compared

with approaches employing KDD 99 dataset - was a very small dataset. For test purposes

a DNS bind exploit was generated. It was observed that packets involving the exploit were

distant from the neurons of the corresponding SOM whereas the packets having normal

DNS behavior were closer.

Another SOM based system [5] employed a similar approach of specializing a SOM for

19

each service such as FTP, HTTP, and Telnet. Detection was based on calculating a quanti-

zation error, which could be considered as a distortion measure. When an input data is pre-

sented to the service specific SOM, if its quantization error is higher than a pre-determined

threshold, the connection is labeled as attack.

In [5], raw traffic from DARPA 99 intrusion detection dataset was summarized into con-

nection records by using a network analyzer called Real-time TCPTrace. This analyzer

produces connection summary information at the connection initiation, connection termi-

nation and every 60 seconds. Each connection record consisted of six features, which are

number of requests (to destination) per second, average size of the requests, average size

of the responses (from destination), sum of idle time of destination waiting a request, sum

of idle time of source waiting a response and number of connections.

Authors of [5] employed a SOM for SMTP service (TCP port 25) and another SOM for

FTP service (TCP port 21). Each SOM was trained with the normal connections of the

service data from week 1. The resulting SOMs were tested on two individual attacks from

week 4. First selected attack was the mailbomb denial of service attack, which involves

sending many packets to the mail server of the victim. The second attack was guessftp

attack in which an attacker tries to guess the password of an account using ftp service.

Without details, system is claimed to detect both attack types with high detection rates [5].

Another SOM based approach [28] focused on the visualization capabilities of the SOM to

provide network administrators a comprehensible visualization of the events taking place.

This will allow administrators to search for the relationships in the data. The general idea

behind the visualization was to place similar events together while events with unrelated

patterns are placed apart. To this end, network intrusion dataset from Information Explo-

ration Shootout Project [13] is employed for training. The dataset contains eight features

for each network event. In terms of the system performance, some attacks in the dataset

were claimed to be detected by observing their placement on the visualization.

20

The UNIX host based intrusion detection system proposed in [18] consisted of data collec-

tion component, a user behavior visualization component and anomaly detection compo-

nent. Self-Organizing Maps were employed for behavior visualization and anomaly detec-

tion. Each user behavior on a UNIX host was characterized with 16 features. The general

idea behind [18] was to employ a SOM to approximate the normal behavior and detect

anomalies by finding their deviations, which was calculated with an anomaly P-Value mea-

sure. Anomaly P-Value was a measure of the degree of anomaly and it is calculated from

the winning neurons and their distances to the input data. The dataset used in this work is

the user behavior gathered from a UNIX host. A key property of this work was adaptability

where training is continuous. System carries on learning as it works on the host. One ef-

fect of continuous learning is the system may also learn to adapt to intrusions. In anomaly

systems, designers should ensure that learning is done on normal behavior. Although there

is no detailed performance evaluation, some anomalies are examined [18].

The authors of [25] used clustering and visualization capabilities of SOM for intrusion

detection. The hypothesis of this work was ”normal behavior would be clustered around

one or more cluster centers and any irregular patterns representing abnormal and possibly

suspicious behavior would be clustered outside the normal clustering.” [25] The authors

used the packets that they captured from their network as the dataset. For training, protocol

type, source and destination IP features were selected from the packets. Selected features

were fed to SOM in 50 packet chunks. Rather than using timestamps, 10 successive values

of the same feature were used for time representation. To demonstrate the performance of

the system, trained SOM was subjected to denial of service attacks. It is observed that the

winning neurons for those attacks were scattered outside the normal cluster.

2.2 Signature Based Intrusion Detection

Current intrusion detection systems that exist in the market are mainly signature based mis-

use detection systems. In this traditional approach, the detection process involves searching

21

known attack signatures on network or system resources. One of the main drawbacks of

such systems is they can only detect known attacks which are included in their signature

database. An example of a signature database is an array of link lists. This structure en-

ables a search to be performed on only applicable test conditions, thus minimizing the

computational needs.

2.2.1 Examples Signature Based Systems

In this section, Snort and Pakemon - two open source network based intrusion detection

systems - and the Cisco IOS firewall, which provides a basic intrusion detection component

will be introduced as the signature based intrusion detection examples. Details of these

systems are as follows:

Snort IDS: Snort is one of the best-known lightweight IDSs, which focuses on perfor-

mance, flexibility and simplicity. It is an open-source intrusion detection system that is

now in quite widespread use [32]. It can detect various attacks and probes including in-

stances of buffer overflows, stealth port scans, common gateway interface attacks, and

service message block system probes. Hence, it is an example of active intrusion detection

systems that detects possible intrusions or access violations while they are occurring [9].

Later versions of Snort provide IP de-fragmentation and TCP assembly to further the de-

tection of attacks, or be it at the expense of having to view the whole attack data. Snort is

lighter than commercial IDSs but it provides more features than any other IDS evaluated in

this study. Although not as straightforward as the Pakemon system, flexible rule writing is

supported in Snort.

Pakemon IDS:”Pakemon has been developed to share IDS components based on the open

source model” [26]. Pakemon is an open source experimental IDS, which aims to detect

evasion methods such as fragmentation, disorder, duplication, overlap, insertion, and de-

synchronization at the IP or TCP layer. Intrusion detection systems that perform monitoring

at the packet level will not be able to see the intrusion data in the same way that final

22

destination of a packet experiences. Hence, Pakemon processes capture packets like a

Linux node by reassembling IP packets and reconstructing the TCP streams. This was an

important feature to provide especially in the light of earlier versions of Snort, which lacked

such a facility. Pakemons’s signature structure is simpler than other IDS (such as Snort),

where this simplicity is both strength, and weakness. That is to say, it takes time for IDS

organizations to release new signature files. Meanwhile, as the signatures of new attacks

are revealed, it is much easier to add them to the lightweight IDS signature databases such

as Pakemon [26, 32].

Cisco IOS Firewall: Cisco IOS provides a cost effective way to deploy a firewall with

intrusion detection capabilities. In addition to the features, Cisco IOS Firewall has 59

built-in, static signatures to detect common attacks and misuse attempts. IDS process on

the firewall inspects packet headers for intrusion detection by using those 59 signatures. In

some cases routers may examine the whole packet and maintain the state information for

the connection. Signatures fall into two categories: compound and atomic. There is no

traffic dependent memory requirement for atomic signatures because they do not involve

connection state. For compound signatures memory is allocated to inspect the state of the

connection [39]. Upon attack detection, the firewall can be configured to log the incident,

drop the packet or reset the connection. The purpose of the intrusion detection component

- on which we focused in this evaluation - is to detect basic attacks on firewall without

consuming resources, which should be used for routing, and forward the filtered traffic to

the IDS in order to be inspected in more detail.

To evaluate the strengths and weaknesses of the signature based intrusion detection sys-

tems, we benchmarked these three systems on the DARPA dataset to put them in the same

context with the learning based systems detailed in Section 2.1.

23

2.2.2 Benchmarking Test Set-up and Procedures

The test set up of this work consists of the following components: DARPA 1999 data set,

traffic re-player and three systems under evaluation.

Dataset Characteristics

For benchmarking purposes use is made of the DARPA 1999 Intrusion Detection Evalua-

tion data set [30]. This represents Tcpdump and audit data generated over five weeks of

simulated network traffic in a hypothetical military local area network (LAN). This work

concentrates on the traffic data collected by sniffers on week-4. The reason we chose

week-4 is that the first three weeks of the data set was designed for training the data driven

learning systems in the original competition, hence not applicable to this work (signature

based systems have no learning phase), whereas weeks 4 and 5 represented the test data.

In this case for, reasons of expediency, we concentrate on the 2.5GB of data present in

week 4 data set (week 5 is even larger and beyond capabilities of the computing resources

available).

The data used for testing (week 4) therefore either represented a normal connection or one

of the 55 different attack types [29]. There are 80 attacks in week-4 data set, where all

attacks fell into one of the five following categories:

• Denial of Service:Attacker tries to prevent legitimate users from using a service.

• Remote to Local:Attacker does not have an account on the victim machine, hence

tries to gain local access.

• User to Root:Attacker has local access to the victim machine and tries to gain super-

user privileges.

• Probe: Attacker tries to gather information on the target host.

• Data: Attacker performs some action, which is prohibited by the security policy.

24

Figure 2.2: Network diagram of the benchmarking environment

Test Environment

In order to evaluate the selected systems based on the 1999 DARPA data set, an envi-

ronment was necessary where test data could be re-run from the 4th week for the 3 target

systems. To this end, the TCPReplay utility [31] provided by SourceForge.net is used to re-

play packets to a live network that were previously captured with the tcpdump program. In

effect, TCPReplay attempts to match the timing of the original traffic, optionally speeding

it up or slowing it down [31]. In addition, TCPReplay supports multiple network interfaces

allowing the injection of replayed packets into different points on a network based on the

source address [31].

The intrusion detection benchmarking environment actually utilized here is shown in Figure

2.2. This consists of one Pentium 200 machine, two Pentium 133 machines all with 32 MB

memory and a Cisco 3600 router with IOS version 12. The Cisco router is configured

to log alerts to the syslog service of the log machine. One of the Pentium 133 machine is

designated as Intrusion Detection (ID) server (on which Pakemon and Snort runs and listens

the Ethernet in promiscuous mode) and the other is designated as the log machine, which

logs the alerts Cisco IOS sends. The Pentium 200 machine is designated to TCPReplay,

where this is responsible for replaying the recorded traffic. Router is configured to inspect

the packets for intrusions and then to let them in to be inspected by the intrusion detection

server.

25

Linux Mandrake 8.1 is installed on all machines as the operating system including all the

necessary libraries (such as libpcap, libnet, libnids etc.). It should be noted that Pakemon

and Snort are used with their default configurations. Moreover, the latest (March 2002)

signature files available are used for both intrusion detection systems. On the other hand,

the data set is replayed with 1Mbps speed because of the hardware limitations of the ID

server (Pakemon/Snort server, Figure 2.2). It took approximately 2 hours to replay one-day

of traffic.

Evaluation Procedure

It should be noted that log or alert files of the systems evaluated contain different types

of entries including different amounts of information about the events that occurred on the

network. Each entry is a packet/message that contains information about an event from a

specific IP address (destination IP and ports). However, an individual attack might contain

more than one entry and many TCP sessions. Therefore, different scripts are developed in

order to filter out the required information from different types of entries in the log files

of Snort, Pakemon and Cisco IOS. We configured Pakemon to record everything in system

log and then the packets to another file, whereas Snort is configured to record intrusion

attempts in directories. Cisco IOS is configured to use the system log service of a Linux

Machine. Thus, our reporting scripts run on these files for Snort, Pakemon and Cisco IOS.

Basically, reporting scripts extract the IP and port information from the log files, and com-

pare them to the ones in the attack identification list, which holds the true attack information

in the DARPA data set [29]. Thus, the systems are compared against the true attacks that

occurred in the 4th week of the simulation, where there were 80 attack instances. The com-

parison of the attack identification list and the log file entries is performed based on source

(attacker) and destination (victim) IP addresses and ports. Information about the source or

destination is extracted from the IDS log files, whereas information about the attacker or

victim is extracted from the attack identification list. In other words, we compare attacker

information in the identification list with the source information in the log files and victim

information in the identification list with destination information in the log files. However,

26

since most entries do not include all the required information (in the case of Pakemon, a

global port-scan entry in a log file usually includes only the source IP), it becomes difficult

to match the relevant fields. Therefore, four confidence rules (CR) are defined for deter-

mining the degree of match in order to detect different attacks, Table 2.5. A log entry -

attack match is most confident if it is a CR1 match, whereas it is least confident if it is a

CR4 match.

CR1 CR2 CR3 CR4
Source and Attacker IP match Yes Yes Yes Yes

Destination and Victim IP match Yes Yes Yes No
Source and Attacker port match Yes No No No

Destination and Victim port match Yes Yes No No

Table 2.5: Summary of the confidence rules

2.2.3 Evaluation Results

As indicated in section 2.2.2, scripts match attacks with log entries. If there is a match,

scripts output attack ID, attack name, attack category from attack identification list and

match confidence level. Table 2.6 summarizes the detection rate of each system on different

categories on the 4th week of traffic generated for DARPA 1999 evaluation.

U2R R2L DoS Probe Data Total
Snort 62.5% 48.6% 31.3% 26.7% 75.0% 43.8%

Pakemon 12.5% 45.9% 38.0% 13.3% 75.0% 36.2%
Cisco IOS 12.5% 18.9% 31.3% 26.7% 0% 21.3%

Total in Week 4 8 37 16 15 4 80

Table 2.6: Number of detected attack instances in different categories compared with their
number of occurrences in 4th week

When the performances of these systems are compared based on different categories, we

see that performance of Snort and Pakemon share similar detection counts over different

attack categories. To actually determine which system performs better, two more param-

eters are taken into consideration: number of false alarms and total number of entries i.e.

27

the number of entries that it takes to be parsed by a network administrator to detect those

attacks.

535231

209

10603

475

150

68

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Snort Pakemon Cisco IOS

Attack Related

Entries

Other entries

Figure 2.3: Log file analysis in terms of number of entries

Figure 2.3 shows the number of attack related entries in the corresponding log files and

their percentage. The reason the number of entries is so high for both Snort and Pakemon

is that both IDSs usually log attack entries more than once. This in return increases the

size of the log files requiring analysis by network administrators. The occurrence of non-

attack entries, i.e. false alarm rate, is very high in both of the intrusion detection systems.

Thus, it is very costly to examine log entries of the two IDS. Although Cisco IOS detects

fewer attacks, it has low false alarm rate and small log file size, which are the significant

advantages over the two IDS.

CR1 CR2 CR3 CR4
Snort 0 6 29 0

Pakemon 0 5 21 1
Cisco IOS 0 0 17 0

Table 2.7: Detection confidence rules for each system

As shown in Table 2.7, most of the attacks are detected with the third confidence rule. Cisco

28

IOS always detects with third confidence rule because it does not log port information

whereas Pakemon and Snort do in some cases. Among the 59 signatures documented in

Cisco IOS documentation [39], only 5 signatures are triggered by the test data. Distribution

of the 5 signatures over attack related entries is shown in Table 2.8. Signature IDs and

names are as follows:

• 1102 Impossible IP Packet:This signature is triggered if the source and destination

addresses are the same.

• 2000 ICMP Echo Reply:This signature is triggered if the ICMP message is ”echo

reply”.

• 2001 ICMP Host Unreachable:This signature is triggered if the ICMP message is

”Host Unreachable”.

• 3042 TCP-FIN bit with no ACK in flags:This signature is triggered if FIN bit is set

but ACK is not set in a packet

• 3050 Half-open SYN attack:This signature is triggered if a connection is improperly

initiated to a well-known TCP port such as FTP, Telnet, HTTP or E-Mail.

U2R R2L DoS Probe Data
Sig. 1102 0 0 1 0 0
Sig. 2000 0 0 4 2 0
Sig. 2001 3 14 0 19 0
Sig. 3042 0 0 0 1 0
Sig. 3050 1 16 3 4 0

Table 2.8: Distribution of triggered Cisco IOS signatures among attack related entries

The only instance of signature 1102 is at DoS category, which is expected because it is

triggered by the land attack. Land is a denial of service attack, which involves packets with

the same source and destination addresses. Signature 2001, which produced the majority

of the attack related alerts, is triggered mostly by R2L and Probe. We believe this is natural

29

since ICMP messages can be used to probe a host or launch a remote attack. In Figure

2.4, each system is represented as a set, which contains detected attacks. The regions that

intersect show the attacks detected by more than one system. Each element in the Figure 2.4

represents a detected attack with the format: Attack Name (Number of detected instances

in that region / Total instances in Week 4) - Attack Category.

Figure 2.4: Analysis of detected attacks

Crash IIS (Day 2), Power Point Macro (Day 3 and 4), Mail Bomb (Day 3), SSH Trojan

(Day 4 and 5), Netbus (Day 5) and Windows Security Hole (Day 5) attacks are detected by

all three systems. To the total defense system formed by three systems, Snort contributes

13 (16.3%) attacks (upper left region), Pakemon contributes 3 (3.8%) attacks (upper right

region) and Cisco IOS contributes 3 (3.8%) attacks. Mutually detected attacks are not

counted in the net contribution because even if one system is taken out of the defense

mechanism, remaining systems will still be able to detect them. By using Snort, Pakemon

and Cisco IOS together, 56.3% attacks are detected whereas individual performances are

30

43.8%, 36.2%, and 21.3% for Snort, Pakemon and Cisco IOS respectively. Figure 2.5

visually summarizes the performance of each system individually and combined together

(S: Snort, P: Pakemon, C: Cisco IOS).

0

10

20

30

40

50

60

70

80

C P S SP SPC Week

4

probe

data

dos

r2l

u2r

Figure 2.5: Performance of the evaluated systems

2.3 Discussion

Advantages and disadvantages of the signature based and learning based approaches are

emphasized in this section. While learning systems have generalization capabilities, build-

ing a learning based intrusion detection system is a huge knowledge engineering task. Pre-

Processing which is applied before dataset is fed to the learning system is very important

and poor pre-processing can significantly affect the performance of a learning system. An-

other issue is that some learning algorithms requirea priori knowledge about the data

that they will work on. This makes it difficult to deploy those learning systems on dif-

ferent datasets. Also, supervised learning algorithms such as classifiers need labeled data,

which is scarce. Finally, learning algorithms involve computationally intensive calcula-

tions; therefore keeping up with the network stream might require significant computing

power.

31

Although not as adaptable as the learning systems, currently, the signature based approach

is a simpler and more practical solution to intrusion detection. However, its major disad-

vantage is limited detection capability (limited to known attacks). Benchmarking results

show that they have high false alarm rates and their detection rate is far from being per-

fect. To reduce the false alarm rate of these systems, system administrators are required to

find the rules that produce false alarms and optimize them for the deployed environment.

Frequent signature update is another important issue, which is usually neglected by system

administrators. In the next Chapter, we propose and investigate a learning system, which

attempts to minimize the amount of a priori information necessary to build the intrusion

detection system.

Chapter 3

Methodology

As indicated in introduction, the principle interest of this work is to thoroughly bench-

mark the performance available from an unsupervised approach to constructing an intru-

sion detection system on minimala priori information. To this end, a hierarchical SOM

architecture is employed, where structural constraints are utilized to build the system. In

comparison to previous learning systems, only six of the 41 connection features in KDD

99 dataset are employed (all decision trees in section 2.1 utilize all 41 features). Thus,

support for content or temporal information must be derived during the learning process

alone. In the following, data collection and summarization matters will be discussed in

Section 3.1. The proposed hierarchy of Self Organizing Maps is described in Section 3.2.

Pre-processing methods employed are explained in Section 3.3.

3.1 The Dataset

The KDD99 dataset is based on DARPA 98 Intrusion detection dataset, which aims to

provide data for researchers working on intrusion detection in general. The DARPA 98

dataset contains network data to configure and evaluate intrusion detection systems. This

32

33

recorded network data contains both attacks and normal connections. This raw network

data is processed by Columbia University for utilization in Knowledge Discovery and Data

Mining Tools Competition using Bro network analyzer [41].

3.1.1 Collected Data: DARPA 98 Dataset

The approach accepted for the DARPA 98 dataset is to synthesize both normal data and

attacks on an isolated environment. Other approaches involve use of real network data and

are rejected because of their drawbacks [37]. In the DARPA approach, a fictitious military

network consisting of hundreds of workstations and thousands of users, is simulated to

generate non-sensitive network traffic.

Figure 3.1: Simplified version of DARPA 98 Simulation Network

The simulated network shown in Figure 3.1 contains victim machines, other workstations

creating background traffic and attackers. Military network is separated from the outside

with a router. Normal traffic is generated so that it will be similar to normal usage in a

real military network. To achieve this, normal usage statistics, which were derived from a

real military base network, are used on the simulation environment. Attacks, which target

3 victim machines, are deployed from outside hosts. Half of the attacks are selected from

34

clear attacks such as brute force denial of services and the other attacks are stealth attacks

such as information espionage. A sniffer, which can see all network traffic is deployed to

record all inbound traffic. In addition audit data is collected from various insider hosts,

which constitute host-based data. Network based and host based information listed below

is made public [16]:

• Recorded network traffic in Tcpdump format

• Sun Basic Security Module audit data

• Unix file system dumps

• Unix process status dumps (1 minute interval captures)

Attacks can manifest themselves on one or more of the data sources listed above. For

instance an attack involving malicious URL requests is likely to be manifested on audit

data in the form of segmentation fault logs whereas a network attack involving malicious

fragmentation can easily be detected in network data.

3.1.2 Summarized Data: KDD 99 Dataset

In 1999, recorded network traffic in the DARPA 98 dataset is processed into TCP con-

nections to form the intrusion detection dataset in KDD99 competition. Specifically ”A

connection is a sequence of TCP packets starting and ending at some well defined times,

between which data flows from a source IP address to a target IP address under some well

defined protocol.” [17] Each connection is labeled as normal or one type of attack. Attacks

fell into 4 categories, which are as follows [16]:

• Denial of Service:Attacker tries to prevent legitimate users from using a service.

• Remote to Local:Attacker does not have an account on the victim machine, hence

tries to gain local access.

35

• User to Root:Attacker has local access to the victim machine and tries to gain super-

user privileges.

• Probe: Attacker tries to gather information on the target host.

In this dataset, 41 features are derived to summarize the connection information. 9 of

those are ”basic features” and the remaining 32 ”additional features” fell into 3 different

categories.

Basic Features

Basic features can be derived from packet headers without inspecting the content of the

packet. Bro [41] is used as the network analyzer to derive basic features. 9 resulting basic

features are:

• Duration of the connection

• Protocol type such as TCP, UDP or ICMP;

• Service type such as FTP, HTTP, Telnet;

• A Status flag, which summarizes the connection;

• Total bytes sent to destination host;

• Total bytes sent to source host;

• Whether the destination and source addresses are the same or not;

• Number of wrong fragments

• Number of urgent packets.

Note that protocol and service types are not derived i.e. they are estimated immediately as

opposed to after a connection has completed. Moreover status flag, which is considered to

36

be the summary of the connection [42], is assigned by Bro and should not be confused with

TCP/IP suite flags. The last three features are related with specific attack types, hence only

the first six basic features are used in this work.

Additional Features

As described in [34], the additional features derived for KDD 99 dataset are as follows:

Content features:Domain knowledge is used to assess the payload of TCP packets. Ex-

amples of content-based features are the number of unsuccessful logins and whether root

access is gained or not.

Time based features:Because of the temporal nature of network attacks, it is important to

inspect the packets within some interval. These features are designed to capture properties

that mature over a 2 second temporal window. Number of connections to the same host is

an example of time-based features.

Host based features:Utilize a historical window estimated over the number of connections

- in this case 100- instead of time. Host based features are therefore used to assess attacks

which span over intervals longer than 2 seconds.

As indicated previously, none of the additional features are used in this work.

3.2 Multi Level Hierarchy

A hierarchical SOM architecture similar to [36] is employed in this work. The basic mo-

tivation is to steadily build more abstract features as the number of SOM layers increase.

That is to say the hypothesis in this work is that features learnt at the initial level of a hier-

archy may still be interpreted in terms of recognizable basic measured properties, whereas

features at the highest level in the architecture will capture aspects synonymous with nor-

mal or attack behaviors. Specifically, three levels are employed, Figure 3.2.

37

Duration
SOM

Service
SOM

Protocol
SOM

Flag
SOM

Dst.

Bytes
SOM

Src.

Bytes
SOM

1st Level Preprocessing

KDD 99 DATASET

2nd Level

Preprocessing

2ndLevel

Data

2ndLevel

SOM

3rd Level

SOM

3rd Level

SOM

1st

Level
Data

Figure 3.2: Multi Layer SOM-Architecture

38

In the first level, individual SOMs are associated with each of the six basic TCP features.

This provides a concise summary of the representative patterns of each basic feature, as

derived over a suitable temporal horizon. Such a horizon provides the basis for recognizing

the ”evolution” of an attack over a sequence of connections. The second layer integrates the

feature specific views provided by the first level SOMs into a single view of the problem. At

this point, we use the training set labels associated with each pattern to label the respective

best matching unit in the second layer. The third and final layer is built for those neurons,

which win for both attack and normal behaviors. This results in third layer SOMs being

associated with specific neurons in the second layer. Moreover, the hierarchical nature of

the architecture means that the first layer may be trained in parallel and the third layer

SOMs are only trained over a small fraction of the data set.

3.3 Pre-Processing and Clustering

Before all levels, pre-processing stage takes place, which prepares the input data for the

next level SOMs. Each pre-processing stage is explained as follows:

3.3.1 1st Level Pre-Processing

In order to build the hierarchical SOM architecture, several data normalization operations

are necessary, where these are for the purposes of preprocessing and inter-layer ’quantiza-

tion’ of maps. On this level, preprocessing has two basic functions: to provide a suitable

representation for the initial data and support the representation of time. In the case of

initial data representation, three of the basic features - Protocol type, Service type and

Status flag - are alphanumeric. As the first SOM layer treats each feature independently,

we merely map each instance of an alphanumeric character to sequential integer values.

Alphanumeric characters and their corresponding numeric values are listed in Appendix

A, Table A.2, A.3 and A.4. Numerical features - connection duration, total bytes set to

39

destination / source host - are used unchanged.

t

locations
. . .

NEW

CONNECTION

PREVIOUS

CONNECTIONS

Tap
p-1

t

locations
Tap

p
Tap

p-2
Tap

3

t

locations
Tap

2

t

locations
Tap

1

llocations

Figure 3.3: Shift register with taps shown in white cells and intervals shown in gray cells

In the case of representing time, the standard SOM used here has no capacity to recall his-

tories of patterns directly. However, sequence as opposed to time stamp, is the property of

significance in this work [36]. A shift register, Figure 3.3, of lengthl is therefore employed

in which a ’tap’ is taken at a predetermined repeating intervalt such thatl mod t = 0,

wheremod is the modulus operator. The first level SOMs only receive values from the

shift register that correspond to tap locations. Tap 1 - the most recent tap - holds the current

connection value. As each new connection is encountered (enters at the right), the content

of each shift register location is transferred one location (to the left), with the previous item

in the l th location being lost. As each new connection is added to shift registers, ap di-

mensional pattern is formed from the taps where pattern dimensionp can be expressed in

terms of the register lengthl and tap intervalt as in equation (3.1).

p =
l − 1

t + 1
+ 1 (3.1)

In our experiments,p = 20 taps are taken from the shift register of sizel = 96 with tap

interval t = 4 . The values taken from the tap locations constitute the first level input,

therefore the dimension of the first level datasets is 20.

40

3.3.2 2nd Level Pre-Processing

The motivation of the second level SOM is to integrate or quantize the outputs of 6 first

level SOMs, which discover the patterns of each feature individually. On the second level,

each connection is characterized by its distance to the first level neurons. There is therefore

the potential for each neuron in the second layer SOM to have an input dimension defined

by the total neuron count across all first layer SOM networks. This would be a brute

force solution that does not scale computationally (there are half a million training set

patterns and 216 first level neurons). Moreover, given the topological ordering provided by

the SOM, neighboring neurons will respond to similar stimuli. We therefore quantize the

topology of each first layer SOM in terms of a fixed number of neurons and re-express the

first layer best matching units in terms of these. This significantly reduces the dimension

seen by neurons in the second layer SOM.

3.3.3 3rd Level Pre-Processing

As mentioned in Section 3.2, normal or attack labels are associated with the neurons of

the second level SOM by using the labels in the training set. This means each neuron on

the second level SOM will act as a sensor of a class (attack or normal). However as the

network behavior changes over time, neurons associated with attack behavior may start to

win for new normal connections. Similarly, network administrators may realize that some

neurons, which are associated with normal behavior, win for some attacks and therefore

those attacks may end up being undetected by the SOM hierarchy. To solve such problems

without re-training, a third level SOM is built for the uncertain second level neurons that

wins for both attack and normal behavior. The motivation of the third level SOMs is to

separate normal behavior from attacks by utilizing a larger SOM and reducing the size of

the training data. To this end, the subset of the second level training set, which wins for

the uncertain second level neuron, is extracted and the third level SOM for that neuron is

trained with the extracted instances. Therefore no pre-processing is applied except filtering

41

the second level dataset according to specific second level neurons that tend to win for both

attack and normal connections. Labels are associated with the third level map neurons as

the same way labels are associated with the second level map neurons (Section 3.2). When

a connection wins for an uncertain neuron on the second level, it is sent to the corresponding

third level SOM for detection process. The approach for building a third level SOM can be

repeated to build higher-level hierarchies, if necessary.

Chapter 4

Learning Algorithms

Two learning algorithms are used to build the hierarchical SOM architecture. Self Orga-

nizing Map [40] is the main learning algorithm of the hierarchy. In Section 4.1, the basic

SOM algorithm is explained with a simple example dataset, which also explains the use of

visualization features. The second learning algorithm is the Potential Function algorithm

[38] that is used to quantize the number of SOM neurons ’perceived’ by the second layer.

The potential Function algorithm is explained in Section 4.2.

4.1 Self-Organizing Maps

Self-Organizing Map (SOM) is an unsupervised learning algorithm developed by Teuvo

Kohonen [40]. In this neural network algorithm, neurons are arranged in a 2 dimensional

grid, which is also called the output space. The learning process is competitive which

means there is a competition among neurons to represent the input patterns. A SOM places

similar patterns to contiguous locations in output space and provides projection and visu-

alization options for high dimensional data. The main focus of the SOM is to summarize

information while preserving topological relationships.

42

43

The training algorithm can be summarized in four basic steps. Step 1 initializes the SOM

before training. Best matching unit (BMU) is the neuron, which resembles the input pattern

most. On Step 2, best matching unit is determined. Step 3 involves adjusting best matching

neuron (or unit) and its neighbors so that the region surrounding the best matching unit will

represent the input pattern better. This training process continues until all input vectors are

processed. Convergence criterion utilized here is in terms ofepochs, which defines how

many times all input vectors should be fed to the SOM for training. Details of the SOM

algorithm are as follows:

Step 1: Initialize each neuron weightwi = [wi1, wi2, . . . , wij]
T ∈ <j. In this work, neuron

weights are initialized with random numbers. Another initialization technique is to draw

random samples from input dataset and use them instead of random numbers but it is not

used in this work.

Step 2: Present an input patternx = [x1, x2, . . . , xj]
T ∈ <j. In this case, input pattern is

a series of taps taken from the shift register. Calculate the distance between patternx, and

each neuron weightwi, and therefore identify the winning neuron or best matching unitc

such as

‖x− wc‖ = min
i
{‖x− wi‖} (4.1)

SOM Toolbox employs Euclidian distance as the distance metric.

Step 3: Adjust the weights of winning neuronc and all neighbor units

wi(t + 1) = wi(t) + hci(t)[x(t)− wi(t)] (4.2)

wherei is the index of the neighbor neuron andt is an integer, the discrete time coordinate.

The neighborhood kernelhci(t) is a function of time and the distance between neighbor

neuroni and winning neuronc. hci(t) defines the region of influence that the input pattern

has on the SOM and consists of two parts [23]: the neighborhood functionh(‖ · ‖, t) and

the learning rate functionα(t), in equation 4.3

hci(t) = h(‖rc − ri‖, t)α(t) (4.3)

44

wherer is the location of the neuron on two dimensional map grid. In this work we used

Gaussian Neighborhood Function. The learning rate functionα(t) is a decreasing function

of time. The final form of the neighborhood kernel with Gaussian function is

hci(t) = exp (−‖rc − ri‖2

2σ2(t)
)α(t) (4.4)

whereσ(t) defines the width of the kernel.

Step 4: Repeat steps 2 - 3 until the convergence criterion is satisfied.

In the following chapters, visualization features of SOM Toolbox [35] will be used to ana-

lyze the results; therefore a simple 2 dimensional example is provided to explain the details

of visualization. This is a special case since the input space has the same dimension with

the output space. Hence, it is possible to visualize the neurons taking the shape of input

data. Figure 4.1a shows the 6 by 6 arrangement of the neurons (represented as dots) in 2

dimensional grid with connection between neighbor neurons colored in gray. Figure 4.1b

shows the 6 by 6 arrangement of the neurons represented as hexagons. In the following

chapters, neurons will be identified with their index; therefore neuron index are shown in

Figure 4.1b.

The hand-crafted example input data consists of two clusters, one is distributed between 0

and 30 in both x and y axis (lower cluster) and the other is distributed between 70 and 100

in x and y axis (higher cluster). The input data is plotted in Figure 4.2.a as plus signs. As

indicated before, on step 1, neuron weights are initialized with random values, also shown

in Figure 4.2a. After training, neurons tend to gather around each cluster trying to model

the input data, Figure 4.2b. Although the map stretches to take the shape of two clusters,

some neurons are positioned between two clusters, and are distant from the other neurons.

Intrusion data used in this work is high dimensional, therefore it is not possible to use

visualization options summarized in Figure 4.2. To visualize the cluster structure of high

dimensional weight vectors, a graphic display called U-Matrix [2] is used. In U-Matrix

visualization, shades of gray are used to show the distances between weight vectors of the

neurons. If the distance between two neurons is small then it is shown with light shades

45

Figure 4.1: SOM in output space

Figure 4.2: SOM before and after training in input space

whereas if the distance is large, dark shade is used. U-Matrix representation employs extra

hexagons between neurons to show the topology of the clusters. U-Matrix of the example

SOM is shown in Figure 4.3.

46

Figure 4.3: U-Matrix of the Example SOM

By looking at the U-Matrix in Figure 4.3, it is possible to say that there are two dense

regions (i.e. clusters), which are represented as the light shaded regions on the lower left

side and on the upper right side. The dark region shows the boundary of the clusters (where

the distance between the neurons is maximum). This area corresponds to the outstanding

neurons between clusters in Figure 4.2b.

We can use input dataset again to see which cluster corresponds to which area on SOM. To

do so, each cluster is individually fed to the SOM again to find the best matching units for

each input pattern (2 dimensional points). A count is kept for the number of patterns each

best matching unit receives. This count is also called as hit count. These counts are then

projected to the 6x6 map grid. This visualization technique is called hit histogram. The hit

histogram of the example SOM is shown in Figure 4.4. In hit histograms, proportionally

larger counts result a greater area of the hexagon being colored.

47

Figure 4.4: Hit histogram for the example SOM

The hit histogram in Figure 4.4 demonstrates that the lower cluster (Cluster1) populates the

lower left region of the map whereas higher cluster (Cluster 2) populates the upper right

region. Hit histograms are very useful to examine which region represents which patterns.

At this point, SOM can be labeled by using the hit count information. Labeling process is as

follows: for each neuron hit count is kept for each cluster. If, for each neuron, the hit count

of Cluster 1 is greater than the hit count of Cluster 2, then the neuron is labeled as Cluster

1. Similarly if, the hit count of Cluster 2 is greater than the hit count of Cluster 1, then the

neuron is labeled as Cluster 2. Neurons, which take counts from neither cluster, are left

unlabeled. SOM Labels of the example SOM are shown in Figure 4.5, where lower cluster

(Cluster 1) is arbitrarily presented with black and higher cluster (Cluster 2) is arbitrarily

presented with white. Unlabeled neurons are presented with gray.

The labeled SOM in Figure 4.5 can now be used as a detector to associate a label for an

input pattern. For example if the best matching unit of a new input pattern is a black neuron

(Cluster 1), then the new input pattern is associated with Cluster 1. Similarly if the best

matching unit of a new pattern is a white neuron (Cluster 2), then the new input pattern is

associated with Cluster 2. If the best matching unit is one of the unlabeled (gray) neurons,

input pattern is said to be distant from both clusters.

48

Figure 4.5: Labels of the example SOM

4.2 Potential Function Clustering

As indicated in Section 3.3.2, using all neurons on the first level maps will result in a 216

dimensional dataset in second level. Dimension is an important factor, which affects the

training time. Therefore some summarization is necessary between the first and the second

levels to reduce dimension. To this end, the potential function method is employed as

the clustering algorithm. Advantage of Potential Function is it requires minimum a priori

knowledge about the input data. The Potential Function Clustering algorithm consists of

four steps [38]:

1. Identify the potential of each data point relative to all other data points. All data

points represent candidate cluster centers;

2. Select the data point with largest potential and label as a cluster center;

3. Subtract the potential of the data point identified at step (2) from all other points and

remove this point from the list of candidate cluster centers;

4. Repeat on step (2) until the end criterion is satisfied.

49

In this case, the set of data points correspond to the set of neurons in each first layer SOM,

where the weights of each neuron describe a neuron position in terms of the original input

space.

Step 1: Characterize neurons in terms of how close they are to the others. A neuron with

many local neighbors should have a high potential as expressed by a suitable cost function,

or

Pt(w(j)) =
M∑

i=1

exp(−α‖w(i)− w(j)‖2) (4.5)

wherew(j) is thej th SOM neuron,Pt(w(j)) is the ”potential” for such neuron at iteration

t, whereM is the number of data points (in this case SOM neurons), andα is the cluster

radii.

Step 2: Identify a candidate cluster center (SOM neuron) by choosing the point with the

largest potentialPt(x
∗).

Step 3: Remove the influence of the chosen neuron from the remaining (unselected) set of

SOM neurons. That is, the remaining neurons have their respective potentials decreased by

a factor proportional to the distance from the current cluster center, or

Pt+1(w(j)) = Pt(w(j))− Pt(w
∗) exp(−β‖w(i)− w(j)‖2) (4.6)

wheret+1 is the index of the updated potential at iterationt; w∗ is the data point associated

with the current cluster center, andβ is the cluster radii (α < β).

The result of step 3 is the labeling of a specific SOM neuron as a cluster center.

Step 4: Iterate the process in conjunction with some suitable stop criterion. In this case, we

stop when six cluster centers are identified, where the alpha and beta values are set accord-

ingly. The net effect of this process is therefore that each of the six first layer SOMs are

characterized in terms of a corresponding set of 6 cluster centers (SOM neurons), resulting

in a total of 36 inputs to the second level SOM. The motivation of finding 6 cluster centers

from each six 6x6 first level SOMs is to reduce the second level input data dimension from

216 to 36.

50

Once the 6 cluster centers are identified for each first level SOM, representing the ’quan-

tized’ SOM output, we normalize as follows,

y =
1

1 + ‖w − x‖ (4.7)

wherew is the cluster center andx is the original first layer SOM input. The second layer

SOM now receives a vector,y, of the form,y = [y11 . . . , y16, y21 . . . yij]
T wherei is the

SOM index andj is the cluster (neuron) index.

Chapter 5

Results

In all experiments, SOMPAK, which is the open source C implementation of the SOM

algorithm, is used to train SOMs in the hierarchy and SOM Toolbox for Matlab is used to

visualize and test the resulting SOMs [35]. In Sections 5.1 and 5.2, details of the dataset

and training parameters are described. Three major groups of experiments focusing on

training set biases, third level maps and individual contribution of 6 basic TCP features are

detailed in Section 5.3.

5.1 KDD 99 Dataset

The KDD-99 data consists of several components, Table 5.1. As in the case of the Inter-

national Knowledge Discovery and Data Mining Tools Competition, only the ’10% KDD’

data is employed for the purposes of training [17]. This contains 24 attack types and is

essentially a more concise version of the ’Whole KDD’ dataset. One side effect of this

is that it actually contains more examples of attacks than normal connections. Moreover,

the attack types are not represented equally, with Denial-of-Service attack types - by the

very nature of the attack type - accounting for the majority of the attack instances. The

51

52

so-called ’Corrected (Test)’ dataset provides a dataset with a significantly different statisti-

cal distribution than either ’10% KDD’ or ’Whole KDD (Test)’ and contains an additional

14 (unseen) attacks. Characteristics of the three datasets were examined in Appendix A in

terms of label counts.

Dataset Label dos probe u2r r2l Total Attack Total Normal
10% KDD 391458 4107 52 1126 396743 97277

Corrected (Test) 229853 4166 70 16347 250436 60593
Whole KDD (Test) 3883370 41102 52 1126 3925650 972780

Table 5.1: Basic Characteristics of the KDD dataset

5.2 Training Parameters

Learning parameters for the SOMs, which are explained in Section 4.1, are summarized in

Table 5.2, where this process is repeated for each SOM comprising the hierarchy. In each

case, training is completed in two stages, the first providing for the general organization of

the SOM and the second for the fine-tuning of neurons. Table 5.3 summarizes the addi-

tional parameters utilized by the shift register. The resulting SOM hierarchy consists of 6

SOM networks in the first layer (temporal encoding), each consisting of 6x6 grid and 20 in-

puts. Potential Function clustering ’quantizes’ each original first layer SOM to six neurons

using the process described in Section 4.2, resulting in 36 inputs to the second layer SOM

(responsible for integration). Once training of the second layer is complete, labeling takes

place. That is, for each connection in the training set, the corresponding label is given to the

best matching unit in the second layer. A count is kept for the number of normal and attack

connections each best matching unit receives. Neurons are labeled as attack (normal), if it

receives more attacks (normal connections) than normal connections (attacks). If a neuron

receives no counts from attack and normal connections, then it is left unlabeled. Moreover

if a neuron receives similar counts from attack and normal connections, then a third level

map is built for that neuron.

53

Parameter Rough Training Fine Tuning
Initial α 0.5 0.05

α decay scheme inverset
Epoch Limit 4,000

Neighborhood Parameters
Initial Size 2 1
Function Gaussian
Relation Hexagonal

Table 5.2: SOM Training Parameters

Shift Register
Length(l) 96

Number of Taps(p) 20
Tap Interval(t) 4

Table 5.3: Shift Register Parameters

5.3 Experiments

Performance of the classifier is evaluated in terms of the false positive and detection rates,

estimated as follows,

Skipped Rate =
Number of Skipped Connections

Total Number of Connections
(5.1)

False Positive Rate =
Number of False Positives

Total number of Normal Connections
(5.2)

Detection Rate = 1− Number of False Negatives

Total number of Attack Connections
(5.3)

where false positive rate is the number of normal connections labeled as attack and false

negative rate is the number of attack connections labeled as normal. A connection is

’skipped’ if its best matching unit does not have a label. Details of the evaluation results

based on the three different experiments are given in the following sections.

54

5.3.1 Experiments on Training Set Biases

The proposed hierarchical SOM architecture was designed to use minimuma priori infor-

mation which means we try to avoid any information that is derived by expert knowledge.

In KDD 99 dataset, additional features that we did not use were derived by applying expert

knowledge on basic features which were explained in 3.1.2. Using minimuma priori infor-

mation also means that the composition of the training set can have significant implications

on the quality of the detector. In this group of experiments, three different approaches in-

volving three different dataset partitions are employed for training (Table 5.4). Table 5.5

summarizes the parameters utilized by the potential function for the three dataset partitions

employed.

Dataset label Total Attack Total Normal
10% KDD 396,744 97,277

10% KDD (Normal only) 0 97,277
50/50 Normal/Attack 97,277 97,277

Table 5.4: Basic Characteristics of the three training datasets Employed

Potential Function Parameters
(For each feature respectively)

10% KDD α 1× 10−6, 1× 10−3, 2× 10−7, 1× 10−6, 16× 10−7, 0.1599015
β 2× 10−2, 2× 10−2, 1× 10−2, 4× 10−2, 1× 10−1, 1× 10−2

10%KDD (Normal) α 5× 10−7, 1× 10−5, 1× 10−5, 1× 10−5, 33× 10−7, 6× 10−7

β 9× 10−1, 13× 10−2, 7× 10−2, 13× 10−2, 1× 10−2, 1× 10−2

50/50 α 9× 10−6, 1× 10−5, 1× 10−7, 1× 10−5, 175× 10−7, 7× 10−7

β 2× 10−1, 15× 10−2, 7× 10−2, 13× 10−2, 1× 10−2, 1× 10−2

Table 5.5: Potential Function Parameters

In the first approach, 10% KDD dataset is used as it is. The resulting system trained with

10% KDD dataset is a misuse detection system, which is trained on both normal behavior

and attacks. In the second, only the normal connections in 10% KDD dataset are used to

train the maps; such a system is denoted an anomaly detection system. In the last approach,

a dataset composed from an equal number of normal and attack connections derived from

the 10% KDD dataset is used. As indicated before, KDD datasets contain more attacks than

55

normal connections. In the last system, the objective is to balance the influence of attacks

and normal connections in the training phase. Figures C.1, C.2 and C.3 in Appendix C

show the U-Matrix visualizations of the resulting second level SOMs.

System 1: Training with 10% KDD

The hit histogram in Figure 5.1 summarizes the count of attack and normal connections in

the second level SOM for 10% KDD.

Figure 5.1: Hit histogram of the second level map for the 10% KDD dataset

It is in apparent in Figure 5.1 that nodes 1, 32 and 36 account for most of the attack connec-

tions and neuron 19 most of the normal connections. From Figure 5.1, it is also apparent

that several neurons also respond to both normal and attack connections. To this end, neu-

rons 4, 17, 18, 23, 30 and 36 are selected for association with third level SOMs, which will

be detailed in Section 5.3.2. A label is associated with each second level neuron according

to the number of attack and normal connections for which the neuron wins. Figure 5.2

shows the neuron labels with ’attack’ label colored in black, ’normal’ colored in white and

unlabeled neurons labeled in grayscale. Table 5.6, details the performance of the second

level map on ’corrected’ test set.

System 2: Training with Only Normal Connections of 10% KDD

An implication of training on ’normal’ connections alone is that no information is available

to build third level maps. However, once the first and second levels maps are trained on

56

Black : Attack Gray : Unlabeled White : Normal

Figure 5.2: Neurons Labels of the Second Level Map trained on 10%KDD dataset

Corrected (Test)
Network level Skipped FP rate Detection rate

Level 2 0% 7.60% 90.60%

Table 5.6: Test Set Results for the first training data set

this data set, the second level map is labeled using the entire 10% KDD dataset. Figure 5.3

shows the hit histogram of the second level map.

Figure 5.3: Hit histogram of the second level map for the normal only 10% KDD dataset

57

Neurons 1, 5, 16, 18, 35 and 36 account for most of the normal connections although

some of them (16 and 36) are also excited by attack connections. Neurons 16, 18 and 36

account for attacks. Moreover, 21 neurons account for normal connections only whereas

the remaining 12 neurons do not account for any connection. Figure 5.4 summarizes the

associated labels.

Black : Attack Gray : Unlabeled White : Normal

Figure 5.4: Neurons Labels of the Second Level Map trained on normal only 10%KDD
dataset

Table 5.7 details the test set performance for the case of the two-layer hierarchy on the

’Corrected (Test)’ set.

Corrected (Test)
Network level Skipped FP rate Detection rate

Level 2 0% 14.50% 91.50%

Table 5.7: Test Set Results for the Second training data set

On comparing performance of systems 1 and 2 (attack dominant versus no attack), detec-

tion rates are essentially unchanged, however, the FP rate is approximately 7% better in

system 1. An FP rate of 14.5% is not acceptable for an intrusion detection system in prac-

tice, hence we did not pursue any further experimentation using a training set consisting of

normal connections only.

58

System 3: Training with 10% KDD Modified - 50% Attack 50% Normal Connections

As indicated in Section 5.1, the 10% KDD training dataset contains more attacks than

normal traffic. In this last case, the training set is balanced by using all the 97,277 normal

connections, and the first 97,277 attack connections from the 10% KDD. Figure 5.5 shows

the hit histogram of the map for this data set (hereafter called 50/50 dataset) at the second

level. Seen attacks in Figure 5.5 correspond to the attack instances included in the training

set whereas the unseen attacks correspond to the remaining attack instances in 10% KDD.

Figure 5.5: Hit histogram of the second level map for the 50/50 dataset

In this case neurons 1, 6, 14, 22, 27, 31 and 32 account for most of the attack connections,

whereas 6 neurons does not account for any connection and the remaining neurons account

for normal connections of the data set (Figure 5.6).

Although there seems to be a vague separation between attack and normal connections on

the map - neurons at the upper part of the map account for attacks and neurons at the lower

end of the map account for normal - the FP rate is still very high, Table 5.8. Thus, compared

with the results for System 1 - Table 5.6 - balancing the dataset did not improve on the

performance of the attack-based dataset. Thus, no further experiments are performed using

50/50 dataset. Table 5.9 details the performance results for the three systems discussed.

All three systems perform well on determining denial of service (dos) attacks and normal

behavior. However performance of user to root (u2r) and remote to local (r2l) are low. Most

of the u2r and r2l type attacks are content based which means intrusion is manifested in the

59

Black : Attack Gray : Unlabeled White : Normal

Figure 5.6: Neurons Labels of the Second Level Map for the 50/50 dataset

Corrected (Test)
Network level Skipped FP rate Detection rate

Level 2 0% 14.30% 91.30%

Table 5.8: Test Set Results for the third training data set

packet payload. In this work, packet payload is not inspected. Therefore low performance

on u2l and r2l is expected. As indicated before, test (corrected) set contains additional 14

new attacks, which SOMs did not see on training. Performance on this unseen attacks,

Table 5.10, also shows SOMs ability to detect novel attacks. Performance of the resulting

three systems for each attack type is also detailed in Table B.1, Appendix B.

normal % dos % probe % u2r % r2l %
System 1 92.4 96.5 72.8 22.9 11.3
System 2 85.5 96.5 91 22.9 20.5
System 3 85.7 96.7 79.7 30 18.4

Table 5.9: Performance of the three systems on different categories

60

5.3.2 Experiments on Third Layer Maps

The above experiments with three different partitions of the original KDD training data

show that maps trained on normal only or 50/50 datasets are not as promising as the map

trained on the unchanged 10% KDD dataset. Therefore for third level experiments, the first

system in Section 5.3.1 is selected as the base system. Third layer SOMs are built for the

second layer SOM neurons that demonstrate significant counts for both attack and normal

connections. Therefore neurons 4, 17, 18, 23, 30 and 36 from the second level map are

selected for association with the third level SOMs, one for each second level neuron, where

Table 5.11 details the respective attack and normal counts.

As a result, there are 6 third layer SOMs built on top of specific second layer neurons.

In each case, third layer SOMs consist of 20x20 neurons, where a larger neuron count is

utilized in the third layer in order to increase the likelihood of separation between the two

connection types. Moreover, only connections, for which the corresponding second layer

neuron is the best matching unit, are used to train the third layer SOMs, facilitating the use

of larger SOMs without experiencing a high computational overhead. Finally, in each case,

Attack Name System 1 % System 2 % System 3 %
apache2. 90.3 29.2 96

httptunnel. 58.9 88.6 71.5
Mailbomb. 7.8 8 8

mscan. 90.2 92.3 91.7
named. 23.5 41.2 35.3

processtable. 59.4 77.2 71.9
ps. 0 0 6.3

saint. 79.1 97.4 89.1
Sendmail. 5.9 29.4 11.8

snmpgetattack. 11.5 23 20.1
Udpstorm. 0 0 0

xlock. 0 11.1 11.1
xsnoop. 0 0 0
xterm. 23.1 30.8 38.5

Table 5.10: Detection rate of new attacks for three systems

61

the inputs to the third level SOMs correspond to the 36-element vector of ’quantized’ first

layer outputs (hence dataset instances from the second level dataset).

Third level map for second level neuron 36 is the map on which separation of attack and

normal connections is most clearly observed. Figure 5.7 shows the U-matrix of this case,

whereas the hit histogram is shown in Figure 5.8.

Figure 5.7: U-Matrix of the neuron 36 third level map

It is now clear that the normal connections all reside in the top left corner of the map,

whereas the attack connections populate the remainder, Figure 5.9. Finally, the larger

Neuron Normal Attack
4 2,177 2,613
17 2,051 3,151
18 1,731 1,706
23 2,304 3,204
30 2,453 5,292
36 1,688 45,440

Table 5.11: Count of Attack and Normal connections per 2nd layer candidate neuron

62

SOMs utilized in the third layer could result in neurons that remain unlabeled. These are

listed as ’skipped’ in the analysis of test set performance.

U-Matrix of the neuron 4 map is shown in Figure 5.10. In the case of neuron 4, normal

Figure 5.8: Hit histogram of the neuron 36 third level map

Black : Attack Gray : Unlabeled White : Normal

Figure 5.9: Neuron Labels of the neuron 36 third level map

63

connections populate the entire map whereas attacks populate specific regions, Figure 5.11.

Figure 5.10: U-Matrix of the neuron 4 third level map

Figure 5.11: Hit histogram of the neuron 4 third level map

Most of the neurons are associated as normal connections while attack regions shown in

Figure 5.11 are associated with attacks, Figure 5.12.

64

Black : Attack Gray : Unlabeled White : Normal

Figure 5.12: Neuron Labels of the neuron 4 third level map

65

In the case of the third level map for neuron 17, whose U-Matrix is shown in Figure 5.13,

no clear separation occurs between attacks and normal connections. However Figure 5.14

shows that regions that are more populated by attacks are less populated with normal con-

nections and vice versa. Figure 5.15 shows the labels for this map.

Figure 5.13: U-Matrix of the neuron 17 third level map

Figure 5.14: Hit histogram of the neuron 17 third level map

66

Black : Attack Gray : Unlabeled White : Normal

Figure 5.15: Neuron Labels of the neuron 17 third level map

67

U-Matrix of the neuron 18 map in Figure 5.16 shows that there is a V shaped sparse region

on the map. Figure 5.17 shows that this sparse region is unpopulated and unlabeled, Figure

5.18.

Figure 5.16: U-Matrix of the neuron 18 third level map

Figure 5.17: Hit histogram of the neuron 18 third level map

68

Black : Attack Gray : Unlabeled White : Normal

Figure 5.18: Neuron Labels of the neuron 18 third level map

69

In neuron 23 map, whose U-matrix is shown in Figure 5.19, both normal and attack con-

nections are spread over entire map. Hit histogram is shown in Figure 5.20. Labels of

neuron 23 map are shown in Figure 5.21.

Figure 5.19: U-Matrix of the neuron 23 third level map

Figure 5.20: Hit histogram of the neuron 23 third level map

70

Black : Attack Gray : Unlabeled White : Normal

Figure 5.21: Neuron Labels of the neuron 23 third level map

71

U-Matrix of neuron 30 is shown in Figure 5.22. In the case of neuron 30 map, attacks gather

around the lower part of the map, Figure 5.24, whereas normal connections populate the

remaining areas, Figure 5.23. Many neurons are unlabeled.

Figure 5.22: U-Matrix of the neuron 30 third level map

Figure 5.23: Hit histogram of the neuron 30 third level map

Table 5.12 details test set performance for the case of two-layer and three-layer hierarchy

on the ’Corrected (Test)’ KDD test set and finally for the case of the three-layer hierarchy

72

Figure 5.24: Neuron Labels of the neuron 30 third level map

Corrected (Test)
Network level Skipped FP rate Detection rate

Level 2 0% 7.60% 90.60%
Level 3 0.70% 4.60% 89%

Whole KDD
Level 3 0.06% 1.70% 99.70%

Table 5.12: Test Set Results of second and third level hierarchies

on the ’whole KDD’ test set. Performance of the two-layer and three-layer hierarchy for

each attack type is detailed in Table B.1, Appendix B. The above results of the three layer

system is also summarized in [15].

Employing third level maps decreased false positive rate by 3% at the expense of decreas-

ing detection rate by only 1.6%. Larger SOMs utilized in the third layer result in neurons

that remain unlabeled. These are listed as ’skipped’ in the test set performance in Table

5.12. Performance of the two-layer and three-layer hierarchy on corrected test set for dif-

ferent categories is given in Table 5.13. Performance on new attacks in corrected test set is

73

detailed in Table 5.14.

normal Dos Probe u2r r2l
Level 2 92.4 96.5 72.8 22.9 11.3
Level 3 95.4 95.1 64.3 10 9.9

Table 5.13: Performance of two layer and three layer hierarchies on different categories

Attack Name Level 2 Level 3
apache2. 90.3 90.7

httptunnel. 58.9 20.9
mailbomb. 7.8 6.8

mscan. 90.2 60.9
named. 23.5 0

processtable. 59.4 47.6
ps. 0 0

saint. 79.1 78.7
sendmail. 5.9 11.8

snmpgetattack. 11.5 10.3
udpstorm. 0 0

xlock. 0 0
xsnoop. 0 0
xterm. 23.1 30.8

Table 5.14: Detection rate of new attacks for two-layer and three-layer hierarchy

5.3.3 Experiments on Feature Contribution

As indicated before, basic TCP features in the KDD 99 dataset are derived from the recorded

network traffic by using a network analyzer called Bro. Six basic features employed for

our experiments were duration, protocol, service, flag, source bytes and destination bytes.

These six features are of different types with different variances. For instance, while Pro-

tocol Type feature takes 3 discrete values in KDD99 dataset, some values such as total

byes sent can take values within a large interval. Although the six basic features are not

expected to contribute equally, if one feature contributes overwhelmingly more than others,

there is a danger that normal or attack behavior is associated with that feature. For instance

74

if the second level map associates all UDP connections with attacks, it might lead to high

false positive rates in future unseen datasets. Thus, it is desirable to have some measure on

contribution of individual features.

In the pervious experiments, all six basic TCP features contribute to the input vector of

the second level map form 36 dimensional input vectors. In this experiment, the system

trained with 10 % KDD dataset in section 5.3.1 (system 1) is used as a baseline system. To

find the contribution of each feature in intrusion detection process, the influence of each

feature is removed one at a time from the second level map. This is achieved by blocking

the corresponding 6 inputs from the feature SOM to the second level SOM. As a result of

this, a 30 dimensional feature space exists at the input to the second layer. Six new second

level maps are trained with the new 30 dimensional 10% KDD training sets, each excluding

one of the six features. ’Corrected’ test data set is also prepared with the same approach.

U-Matrix and label visualizations of the baseline second level SOM and the new second

level SOMs excluding one feature are shown in Figures D.1, D.2, D.3, D.4, D.5, D.6 and

D.7 in Appendix D.

Table 5.15 details the performance of second level maps excluding one feature. General

detection rate varies between 87.1% and 90.6%. In case of the map excluding protocol,

false positive rate increases significantly. Therefore protocol seems to be an important

feature that contributes to normal connection determination. Performance of maps, which

exclude source and destination bytes, is very close. Exclusion of the Service feature results

in the worst detection rate among other maps however it minimizes false positive rate as

well.

In addition to general false positive and detection rates shown in Table 5.15, individual

attack detection rates are calculated. Our purpose is to find significant changes in detection

rate as we exclude different features. Generally, excluding one feature results in some drop

in performance. In the case of some attacks it is observed that excluding protocol improves

the detection rate. Compared to the general detection rate, some individual attack detection

rates change significantly as we exclude features. Table B.2 in Appendix B provides the

75

Excluded Feature Skipped FP Rate Detection Rate
None (Baseline) 0 7.60% 90.60%

Duration 0 2.30% 89%
Protocol 0.01% 44.10% 91.20%
Service 0 0.90% 87.10%

Flag 0 2.80% 88.30%
Source Bytes 0 1.50% 88.30%

Destination Bytes 0 1.40% 88.30%

Table 5.15: Contribution results on Corrected test set

detection rates for each attack type. Performance of the systems excluding one feature for

different categories is given in Table 5.16. Performance on new attacks, which are only

included in ’Corrected’ test data is shown in Table 5.17.

normal Dos probe u2r r2l
Baseline (System 1) 92.4 96.5 72.8 22.9 11.3

Duration 97.7 96.2 58.6 4.3 1.8
Protocol 55.9 96.6 50.5 5.7 27.4
Service 99.1 94.3 28.3 0 0.7

Flag 97.2 95.5 35.8 1.4 0.8
Src. Bytes 98.5 95.5 36.1 0 0.9
Dst. Bytes 98.6 95.5 36.1 0 0.8

Table 5.16: Performance of the systems excluding one feature on different categories

76

Attack Name Baseline Duration Protocol Service Flag Src. Byes Dst Bytes
apache2. 90.3 68.8 13.5 13.4 13.4 13.4 13.4

httptunnel. 58.9 14.6 26.6 11.4 12.7 12.7 12.7
mailbomb. 7.8 6.6 0 0 0 0 0

mscan. 90.2 66.6 2.8 0.9 1.3 0.9 0.9
named. 23.5 0 0 0 0 0 0

processtable. 59.4 40.3 1.2 1.2 1.2 1.2 1.2
ps. 0 0 12.5 0 0 0 0

saint. 79.1 73.9 64.7 42.8 53.8 55.4 55.4
sendmail. 5.9 0 5.9 0 0 0 0

snmpgetattack. 11.5 0.9 33.8 0.9 0.9 1.1 1.1
udpstorm. 0 0 0 0 0 0 0

xlock. 0 11.1 0 0 0 0 0
xsnoop. 0 0 0 0 0 0 0
xterm. 23.1 0 0 0 0 0 0

Table 5.17: Performance of the systems excluding one feature on new attacks

77

5.4 Comparisons

Table 5.18 provides a summary of recent results from alternative data mining approaches

trained on the KDD-99 dataset and tested using the ’Corrected (Test)’ data [42, 12]. The

details of these systems have been discussed in Chapter 2. In addition, performance of the

the KDD 99 competition winners are given in Table 5.19.

Technique Detection Rate FP Rate
Data-Mining [42] 70-90% 2%
Clustering [12] 93% 10%

K-NN [12] 91% 8%
SVM [12] 98% 10%

Table 5.18: Recent Results on the KDD benchmark

normal dos probe u2r r2l
KDD 99 Winner [3] 99.5 97.1 83.3 13.2 8.4

Table 5.19: Performance of the KDD 99 winner

Detection rates are very similar to those reported for the SOM hierarchy constructed in

our experiments. However, there are actually several additional factors with which these

results need to be interpreted. Firstly, all the data mining approaches are based on all 41

features; the SOM hierarchy only utilizes 6. Secondly, the other systems utilized host based

information, thus providing an advantage when detecting content based attacks [12]. The

SOM hierarchy is a network based IDS, which does not inspect content.

Chapter 6

Conclusions and Future Work

A hierarchical SOM approach to the IDS problem is proposed and demonstrated on the In-

ternational Knowledge Discovery and Data Mining Tools Competition intrusion detection

benchmark [17]. In the proposed three-level hierarchy, each first level map summarizes

one feature. Temporal relations are also encoded on the first level. The second level map

integrates the summaries from the first level maps. Third level maps are built to optimize

performance. Each neuron on second or higher level maps can be considered as a sensor.

Specific attention is given to the representation of connection sequence (time) and the hier-

archical development of abstractions sufficient to permit direct labeling of SOM nodes with

connection type. Other than these two concepts, no additional use ofa priori information

is employed. The proposed system is shown to be capable of learning attack and normal

behavior from the training data and make accurate predictions on the test data, which also

contains new attacks that the system was not trained on.

To understand the effect of the training data set on the overall performance of the learning

system for IDS, three different versions of KDD data set are employed. According to the

version of the dataset, two misuse and one anomaly detection systems are trained. Based

on our results in Tables 5.6, 5.7 and 5.8, using different distributions or percentages of

attack to normal connections does not affect the detection rate of the hierarchical SOM

78

79

architecture. However, it does have an influence on the false positive rate of the detector.

As the nature and ratio of attacks in the training set increase, the false positive rate becomes

more acceptable - indeed with a small decrease in the detection rate.

Building third level maps for those second level neurons that receive counts from attack

and normal connections demonstrate separation between attacks and normal connections.

Although three levels are demonstrated in the hierarchical SOM architecture, more levels

can be added to the hierarchy in the same way that the third level is constructed. If this

hierarchy is deployed in a real world network, when the network behavior changes, for

example due to a new service addition, additional third level maps can be built for sec-

ond level neurons, which starts to produce false alarms for new services, thus tuning the

hierarchy for the new condition without re-training.

To determine the contribution of each of the six basic TCP features, experiments are con-

ducted to assess the influence of each feature by removing the corresponding first level

SOM and re-training second level SOMs. Although in all cases there is a fluctuation,

experiments on the six basic TCP features demonstrated that contributions of the six ba-

sic TCP features to intrusion detection are similar in terms of detection rate (Table 5.15).

However, results show that the protocol feature should be included to reduce the false pos-

itive rate. Moreover, when the service feature is excluded, hierarchical SOM architecture

achieves the lowest false positive rate. In [42], (Bro) flag feature is reported to be most de-

scribing pattern because it is the summary of the connection. Results here, however, show

that exclusion of the flag feature does not dramatically affect the detection or false positive

rates.

In comparison to data mining approaches currently proposed, the approach provides com-

petitive performance whilst utilizing a fraction of the feature set (6 of the 9 ”Basic features

of an Individual TCP connection” and none of the 32 additional higher-level derived fea-

tures). At the same time the SOM hierarchy does not make use of host-based or content-

based information.

80

This work addresses design issues of the hierarchical SOM architecture as well as assessing

the importance of training set biases and contributions of the individual features. However,

there are issues that can be improved such as data collection and summarization issues, fu-

ture work on distributed intrusion detection approach and optimization of SOM algorithm.

Data collection and summarization are very important in case of data driven systems like

the proposed SOM hierarchy. Raw network data of the KDD 99 intrusion detection dataset

is collected from the DARPA 98 simulated test environment and then summarized into con-

nection records with Bro network analyzer. Although collecting raw data from a controlled

environment and then summarizing the data into high-level events is a valid solution, we

also believe that data collection and summarization procedures should be well-defined, thus

can be repeated easily. The KDD 99 intrusion detection data is still the only labeled data,

which enable intrusion detection designers to train and evaluate their systems on and com-

pare the results with other people who employed the same dataset. Since 1999, many new

technologies and protocols have been developed and many new attack types have been de-

vised, therefore this dataset has became outdated. Moreover, intrusion detection designers

should be able to demonstrate that their systems will work for datasets other than DARPA

98 or KDD 99 data. Unfortunately, very little is published about the technical and proce-

dural details of the DARPA intrusion detection environments, which makes it very difficult

to follow their procedures to repeat the data collection. A new test environment is needed

which is well documented and whose methodology is validated [22]. This new system not

only should provide up-to-date data for intrusion detection designers but also should allow

them to examine results in the light of the complete documentation.

The Bro network analyzer, which is used to create KDD 99 dataset, also has some short-

comings. For the KDD 99 dataset, authors of [42] modified the fragment inspection com-

ponent of Bro and extended it to handle ICMP connections. ”Modified Bro” is the net-

work analyzer proposed as the generic component for building intrusion systems. However

”modified Bro” is not publicly available. Our experience with the open source Bro (stable

version 0.7) showed that it needs different policy files to analyze different protocols. Only,

81

TCP and UDP policies are bundled with the open source Bro. Additionally summarization

of the connectionless UDP traffic into connection records is an issue open to discussion.

We agree that generic and publicly available components should be developed to collect

and summarize raw data, which will allow intrusion detection designers to focus on the

intrusion detection component itself. However, currently no such tool is available. De-

signers either choose to utilize KDD 99 dataset, which is outdated, or develop their own

customized network summarizers, which in turn makes comparisons with other systems

difficult. Therefore a generic network analyzer, which is flexible and easy to integrate to

higher intrusion detection components, should be developed.

Distributed intrusion detection is a promising technique, which reduces the amount of mon-

itored data and eliminates boundaries between host based and network based systems. In

distributed intrusion detection, lightweight intrusion detection systems (sensors) are de-

ployed on various locations (computers) of the network. Deployed lightweight sensors

monitor network and/or host activities without consuming as much resource as a ”global”

intrusion detection system does. Collected ”local” data is then sent to a central system to

determine the global state of the network. An example of the distributed intrusion approach

[43] is implemented by using Snort [32] as the sensor component. The proposed hierar-

chical SOM architecture can also be used as the sensor component to develop a distributed

intrusion detection system.

In the KDD 99 dataset, some denial of service attacks such as smurf attack involves sending

many packets to the target host. As a result, the KDD 99 dataset contains many repeating

instances. Training process can be optimized by removing or reducing the repeating in-

stances from the input dataset. However special attention must be given; this might change

the distribution of the input data and the resulting system may suffer in terms of detection

rate.

Another point of optimization is the detection process. In the current hierarchical SOM,

the best matching unit is determined by calculating the distance between the input instance

to all second and possibly third layer neurons. In this case, all the neurons in second and

82

third level maps are used for detection. As indicated in Section 4.1, the SOM places sim-

ilar patterns with consecutive locations. Therefore, representative neurons can be selected

for different neighborhoods, which have the same label. This will reduce the number of

distance calculations between the input instance and the neurons, hence detection time.

Appendix A

KDD 99 Dataset Details

Details of the attack definitions can be found at MIT Lincoln Laboratory web site[30].

Table A.1: Label counts of the KDD 99 datasets

Attack Category Corrected 10 Percent Kdd Whole Kdd

apache2. dos 794 0 0

back. dos 1098 2203 2203

buffer overflow. u2r 22 30 30

ftp write. r2l 3 8 8

guesspasswd. r2l 4367 53 53

httptunnel. r2l 158 0 0

imap. r2l 1 12 12

ipsweep. probe 306 1247 12481

land. dos 9 21 21

loadmodule. u2r 2 9 9

mailbomb. dos 5000 0 0

Continued on next page

83

84

Table A.1: Label counts of the KDD 99 datasets

Attack Category Corrected 10 Percent Kdd Whole Kdd

mscan. probe 1053 0 0

multihop. r2l 18 7 7

named. r2l 17 0 0

neptune. dos 58001 107201 1072017

nmap. probe 84 231 2316

normal. normal 60593 97277 972780

perl. u2r 2 3 3

phf. r2l 2 4 4

pod. dos 87 264 264

portsweep. probe 354 1040 10413

processtable. dos 759 0 0

ps. u2r 16 0 0

rootkit. u2r 13 10 10

saint. probe 736 0 0

satan. probe 1633 1589 15892

sendmail. r2l 17 0 0

smurf. dos 164091 280790 2807886

snmpgetattack. r2l 7741 0 0

snmpguess. r2l 2406 0 0

spy r2l 0 2 2

sqlattack. u2r 2 0 0

teardrop. dos 12 979 979

udpstorm. dos 2 0 0

warezclient. r2l 0 1020 1020

warezmaster. r2l 1602 20 20

worm. r2l 2 0 0

Continued on next page

85

Table A.1: Label counts of the KDD 99 datasets

Attack Category Corrected 10 Percent Kdd Whole Kdd

xlock. r2l 9 0 0

xsnoop. r2l 4 0 0

xterm. u2r 13 0 0

Table A.2: Enumeration of the alphanumeric Protocol feature

Value Assigned
0 tcp
1 udp
2 icmp

Table A.3: Enumeration of the alphanumeric Service feature

Value Assigned

http 0

smtp 1

finger 2

domain u 3

auth 4

telnet 5

ftp 6

eco i 7

ntp u 8

ecr i 9

other 10

private 11

Continued on next page

86

Table A.3: Enumeration of the alphanumeric Service feature

Value Assigned

pop 3 12

ftp data 13

rje 14

time 15

mtp 16

link 17

remote job 18

gopher 19

ssh 20

name 21

whois 22

domain 23

login 24

imap4 25

daytime 26

ctf 27

nntp 28

shell 29

IRC 30

nnsp 31

http 443 32

exec 33

printer 34

efs 35

courier 36

uucp 37

Continued on next page

87

Table A.3: Enumeration of the alphanumeric Service feature

Value Assigned

klogin 38

kshell 39

echo 40

discard 41

systat 42

supdup 43

iso tsap 44

hostnames 45

csnet ns 46

pop 2 47

sunrpc 48

uucp path 49

netbios ns 50

netbios ssn 51

netbios dgm 52

sql net 53

vmnet 54

bgp 55

Z39 50 56

ldap 57

netstat 58

urh i 59

X11 60

urp i 61

pm dump 62

tftp u 63

Continued on next page

88

Table A.3: Enumeration of the alphanumeric Service feature

Value Assigned

tim i 64

red i 65

Table A.4: Enumeration of the Bro Flag feature

Value Assigned
SF 0
S1 1
REJ 2
S2 3
S0 4
S3 5
RSTO 6
RSTR 7
RSTOS0 8
OTH 9
SH 10

Appendix B

Detailed Detection Rates

Table B.1: Detection rates for each attack type for systems explained in section 5.3.1 and

5.3.2

Attack Category System 1 (Level3) System 1 System 2 System 3

apache2. dos 90.68 90.30 29.22 95.97

back. dos 45.17 50.91 7.19 52.00

buffer overflow. u2r 9.09 13.64 18.18 22.73

ftp write. r2l 0.00 0.00 0.00 33.33

guesspasswd. r2l 9.69 7.95 16.69 13.44

httptunnel. r2l 20.89 58.86 88.61 71.52

imap. r2l 100.00 0.00 100.00 100.00

ipsweep. probe 34.64 25.49 83.01 25.16

land. dos 44.44 100.00 100.00 100.00

loadmodule. u2r 0.00 0.00 0.00 0.00

mailbomb. dos 6.80 7.80 8.00 7.98

mscan. probe 60.87 90.22 92.31 91.74

Continued on next page

89

90

Table B.1: Detection rates for each attack type for systems explained in section 5.3.1

and 5.3.2

Attack Category System 1 (Level3) System 1 System 2 System 3

multihop. r2l 5.56 0.00 16.67 0.00

named. r2l 0.00 23.53 41.18 35.29

neptune. dos 90.89 96.39 97.36 96.93

nmap. probe 53.57 40.48 95.24 85.71

perl. u2r 0.00 0.00 0.00 50.00

phf. r2l 0.00 0.00 50.00 50.00

pod. dos 24.14 6.90 60.92 4.60

portsweep. probe 47.74 51.98 93.79 84.75

processtable. dos 47.56 59.42 77.21 71.94

ps. u2r 0.00 0.00 0.00 6.25

rootkit. u2r 7.69 69.23 53.85 61.54

saint. probe 78.67 79.08 97.42 89.13

satan. probe 69.63 73.67 88.00 76.61

sendmail. r2l 11.76 5.88 29.41 11.76

smurf. dos 99.85 99.85 99.98 99.83

snmpgetattack. r2l 10.28 11.55 23.05 20.10

snmpguess. r2l 2.29 3.20 5.49 7.52

sqlattack. u2r 0.00 50.00 50.00 50.00

teardrop. dos 0.00 16.67 16.67 25.00

udpstorm. dos 0.00 0.00 0.00 0.00

warezmaster. r2l 19.54 27.34 34.14 34.46

worm. r2l 0.00 50.00 50.00 50.00

xlock. r2l 0.00 0.00 11.11 11.11

xsnoop. r2l 0.00 0.00 0.00 0.00

xterm. u2r 30.77 23.08 30.77 38.46

91

Table B.2: Detection rates for each attack type for feature contribution experiments in

Section 5.3.3

Excluded Features

Attack Baseline Duration Protocol Service Flag S.Bytes D.Bytes

apache2. 90.30 68.77 13.48 13.35 13.35 13.35 13.35

back. 50.91 49.00 70.04 30.33 53.37 30.33 30.33

buffer overflow. 13.64 9.09 4.55 0.00 4.55 0.00 0.00

ftp write. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

guess passwd. 7.95 1.08 5.84 0.14 0.27 0.14 0.14

httptunnel. 58.86 14.56 26.58 11.39 12.66 12.66 12.66

imap. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ipsweep. 25.49 7.84 24.84 15.03 11.11 14.38 14.38

land. 100.00 0.00 0.00 0.00 0.00 0.00 0.00

loadmodule. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mailbomb. 7.80 6.56 0.00 0.00 0.00 0.00 0.00

mscan. 90.22 66.57 2.75 0.85 1.33 0.85 0.85

multihop. 0.00 11.11 11.11 0.00 0.00 0.00 0.00

named. 23.53 0.00 0.00 0.00 0.00 0.00 0.00

neptune. 96.39 96.20 98.63 90.81 95.49 95.54 95.53

nmap. 40.48 1.19 57.14 1.19 1.19 1.19 1.19

perl. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

phf. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pod. 6.90 0.00 49.43 1.15 0.00 0.00 0.00

portsweep. 51.98 10.45 22.60 2.26 3.39 2.26 2.26

processtable. 59.42 40.32 1.19 1.19 1.19 1.19 1.19

ps. 0.00 0.00 12.50 0.00 0.00 0.00 0.00

Continued on next page

92

Table B.2: Detection rates for each attack type for feature contribution experiments in

Section 5.3.3

Attack Baseline Duration Protocol Service Flag S.Bytes D.Bytes

rootkit. 69.23 7.69 7.69 0.00 0.00 0.00 0.00

saint. 79.08 73.91 64.67 42.80 53.80 55.43 55.43

satan. 73.67 69.38 85.49 48.99 63.26 63.26 63.26

sendmail. 5.88 0.00 5.88 0.00 0.00 0.00 0.00

smurf. 99.85 99.71 99.85 99.78 99.66 99.77 99.77

snmpgetattack. 11.55 0.87 33.77 0.87 0.92 1.11 1.09

snmpguess. 3.20 0.54 59.98 0.91 0.79 0.83 0.83

sqlattack. 50.00 0.00 0.00 0.00 0.00 0.00 0.00

teardrop. 16.67 0.00 33.33 0.00 0.00 0.00 0.00

udpstorm. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

warezmaster. 27.34 9.30 7.55 0.25 0.69 0.50 0.50

worm. 50.00 0.00 0.00 0.00 0.00 0.00 0.00

xlock. 0.00 11.11 0.00 0.00 0.00 0.00 0.00

xsnoop. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

xterm. 23.08 0.00 0.00 0.00 0.00 0.00 0.00

Appendix C

U-Matrix Displays of the 2nd Level

SOMs in Section 5.3.1

Figure C.1: U-Matrix of the second level map for the 10% KDD dataset

93

94

Figure C.2: U-Matrix of the second level map for the normal only10% KDD dataset

Figure C.3: U-Matrix of the second level map for the 50/50 dataset

Appendix D

U-Matrix and Labels of the 2nd Level

SOMs in Section 5.3.3

Black : Attack Gray : Unlabeled White : Normal

Figure D.1: U-matrix and labels for the baseline 36 dimensional second level map (System
1)

95

96

Black : Attack Gray : Unlabeled White : Normal

Figure D.2: U-matrix and labels for the duration excluded second level map

Black : Attack Gray : Unlabeled White : Normal

Figure D.3: U-matrix and labels for the protocol excluded second level map

97

Black : Attack Gray : Unlabeled White : Normal

Figure D.4: U-matrix and labels for the service excluded second level map

Black : Attack Gray : Unlabeled White : Normal

Figure D.5: U-matrix and labels for the flag excluded second level map

98

Black : Attack Gray : Unlabeled White : Normal

Figure D.6: U-matrix and labels for the source bytes excluded second level map

Black : Attack Gray : Unlabeled White : Normal

Figure D.7: U-matrix and labels for the destination bytes excluded second level map

Bibliography

[1] Miheev V.and Vopilov A. and Shabalin I. The MP13 Approach to the KDD’99 Clas-
sifier Learning Contest.SIGKDD Explorations, 1(2):76–77, 2000.

[2] Ultsch A. and Siemon H. Kohonen’s self-organizing feature maps for exploratory data
analysis. InProceedings of the International Neural Network Conference (INNC’90),
Dordrecht, Netherlands, pages 305–308. Kluwer, 1990.

[3] Pfahringer B. Winning the KDD99 Classification Cup: Bagged Boosting.SIGKDD
Explorations, 1(2):65–66, 2000.

[4] Rhodes B.C., Mahaffey J.A., and Cannady J.D. Multiple Self-Organizing Maps for
Intrusion Detection. InProceedings of 23rd National Information Systems Security
Conference, 2000.

[5] Nguyen B.V. Self Organizing Map (SOM) for Anomaly Detection. Ohio University
School of Electrical Engineering and Computer Science CS680 Technical Report,
Spring 2002.

[6] Elkan C. Results of the KDD’99 Classifier Learning. InACM SIGKDD Explorations,
volume 1, pages 63–64, 2000.

[7] Jirapummin C., Wattanapongsakorn N., and Kanthamanon P. Hybrid neural networks
for intrusion detection system. InProceedings of The 2002 International Technical
Conference On Circuits/Systems, Computers and Communications, 2002.

[8] J. Cannady. Artificial neural networks for misuse detection. InProceedings of the
1998 National Information Systems Security Conference (NISSC’98) October 5-8
1998. Arlington, VA., pages 443–456, 1998.

[9] CERT/CCc©. Identifying Tools That Aid in Detecting Signs of Intrusion. Web site,
Jan 2001.http://www.cert.org/security-improvement
/implementations/i042.07.html .

99

100

[10] CERT/CCc©. Incident Statistics 1988-2002. Web Site, 2002.
http://www.cert.org/stats/cert stats.html .

[11] Denning D.E. An Intrusion Detection Model. InIEEE Transactions on Software
Engineering, volume SE-13, pages 222–232, Feb. 1987.

[12] Eskin E., Arnold A., Prerau M., Portnoy L., and Stolfo S. A Geometric Framework
for Unsupervised Anomaly Detection: Detecting intrusions in unlabeled data. In
D. Barbara and S. Jajodia, editors,Applications of Data Mining in Computer Security.
Kluwer, 2002. ISBN 1-4020-7054-3, 2002.

[13] Grinstein G. Information Exploration Shootout Project and Benchmark Data Sets:
Evaluating how Visualization does in Analyzing Real-World Data Analysis Problems.
In Proceedings of IEEE Visualization ’97, pages 511–513, Oct. 1997.

[14] Kayacik G. and Zincir-Heywood N. A Case Study Of Three Open Source Security
Management Tools. InProceedings of International Symposium on Integrated Net-
work Management, 2003.

[15] Kayacik G., Zincir-Heywood N., and Heywood M. On the Capability of an SOM
based Intrusion Detection System. InProceedings of International Joint Conference
on Neural Networks, 2003.

[16] MIT Lincoln Laboratory Information Systems Technology Group.
The 1998 Intrusion Detection Off-line Evaluation Plan, March 1998.
http://www.ll.mit.edu/IST/ideval/docs/1998/id98-eval-ll.txt .

[17] S. Hettich and S. D Bay. The UCI KDD Archive. Irvine, CA: Univer-
sity of California, Department of Information and Computer Science., 1999.
http://kdd.ics.uci.edu .

[18] Höglund A.J. and Ḧatönen K and Sorvari A.S. A Computer Host-based User Anomaly
Detection System using Self-Organizing Map. InProceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks, volume 5, pages 411–416,
2000.

[19] Levin I. KDD-99 Classifier Learning Contest: LLSoft’s Results Overview.SIGKDD
Explorations, 1(2):67–75, 2000.

[20] Witten I.H. and Frank E.Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, 2002.

[21] Cannady J. Next Generation Intrusion Detection: Autonomous Reinforcement Learn-
ing of Network Attacks. InProceedings of 23rd National Information Systems Secu-
rity Conference, 2000.

101

[22] McHugh J. Testing Intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Transactions on Information and System Security (TISSEC), 3(4):262–294,
2000.

[23] Vesanto J. Data Mining Techniques Based on the Self-Organizing Map. Master’s
thesis, Helsinki University of Technology, May 1997.

[24] Albus J.S. A New Approach to Control: The Cerebellar model Articulation Controller
(CMAC). Transactions of ASME, Sep. 1975.

[25] Labib K. and Vemuri R. NSOM: A Real-Time Network-Based Intrusion Detection
Using Self-Organizing Maps.Networks and Security, 21(1), Oct. 2002.

[26] Takeda K. and Takefuji Y. Pakemon - A Rule Based Network Intrusion Detection Sys-
tem. In International Journal of Knowledge-Based Intelligent Engineering Systems,
volume 5, pages 240–246, Oct. 2001.

[27] R. A. Kemmerer and G. Vigna. Intrusion detection: A brief history and overview.
IEEE Security and Privacy, April 2002.

[28] Girardin L. An Eye on Network Intruder-Administrator Shootouts. InProceedings of
the Workshop on Intrusion Detection and Network Monitoring, Apr. 1999.

[29] MIT Lincoln Laboratory. DARPA 99 Intru-
sion Detection Data Set Attack Documentation.
http://www.ll.mit.edu/IST/ideval/docs/1999/attackDB.html .

[30] MIT Lincoln Laboratory. Intrusion Detection Datasets.
http://www.ll.mit.edu/IST/ideval/data/data index.html .

[31] Bing M. and Turner A. TCPReplay traffic replay utility. Web site.
http://tcpreplay.sourceforge.net/ .

[32] Roesch M. Snort - Lightweight Intrusion Detection for Networks. In13th Systems
Administration Conference, Proceedings of LISA, 1999.

[33] Joshi M.V., Agarwal R.C., and Kumar V. Mining needle in a haystack: classifying
rare classes via two-phase rule induction.SIGMOD Record (ACM Special Interest
Group on Management of Data), 30(2):91–102, 2001.

[34] University of California Department of Information and Computer Sci-
ence. Kdd cup 99 intrusion detection dataset task description, 1999.
http://kdd.ics.uci.edu/databases/kddcup99/task.html .

102

[35] Laboratory of Computer and Information Science Neural Networks Re-
search Centre. Software Packages from Helsinki University of Technology.
http://www.cis.hut.fi/research/software.shtml .

[36] Lichodzijewski P., Zincir-Heywood N., and Heywood M. Host-Based Intrusion De-
tection Using Self Organizing Maps. InProceedings of IEEE International Joint
Conference on Neural Networks, pages 1714–1719, 2002.

[37] Lippmann R., Fried D., Graf I., Haines J., Kendall K., McClung D., Weber S., Webster
S., Wyschogrod S., Cunningham R., and Zissman M. Evaluating Intrusion Detection
Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation. InProceedings
of the DARPA Information Survivability Conference and Exposition, Los Alamitos,
CA, 2000. IEEE Computer Society Press.

[38] Chiu S.L. Fuzzy model identification based on cluster estimation. InJournal of
Intelligent and Fuzzy Systems, number 2, pages 267–278, 1994.

[39] Cisco Systems. Cisco IOS Firewall Intrusion Detection System Documentation. 2003.
http://www.cisco.com/univercd/cc/td/doc/product
/software/ios120/120newft/120t/120t5/iosfw2/ios ids.htm .

[40] Kohonen T.Self Organizing Maps. Springer, third edition, 2001.

[41] Paxson V. Bro: a system for detecting network intruders in real-time.Computer
Networks (Amsterdam, Netherlands: 1999), 31(23–24):2435–2463, 1999.

[42] Lee W. and Stolfo S. A Framework for Constructing Features and Models for Intru-
sion Detection Systems.Information and System Security, 3(4):227–261, 2000.

[43] Fyodor Y. ‘Snortnet’ - A Distributed Intrusion Detection System.

