
CAN THE BEST DEFENSE BE A GOOD OFFENSE? EVOLVING

(MIMICRY) ATTACKS FOR DETECTOR VULNERABILITY
TESTING UNDER A ‘BLACK-BOX’ ASSUMPTION

by

Hilmi Güneş Kayacık

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

March 2009

c© Copyright by Hilmi Güneş Kayacık, 2009

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to

the Faculty of Graduate Studies for acceptance a thesis entitled “CAN THE

BEST DEFENSE BE A GOOD OFFENSE? EVOLVING (MIMICRY) ATTACKS

FOR DETECTOR VULNERABILITY TESTING UNDER A ‘BLACK-BOX’

ASSUMPTION” by Hilmi Güneş Kayacık in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Dated: March 20, 2009

External Examiner:
Dr. Anil Somayaji

Research Supervisors:
Dr. Nur Zincir-Heywood

Dr. Malcolm Heywood

Examining Committee:
Dr. Qigang Gao

Dr. Denis Riordan

ii

DALHOUSIE UNIVERSITY

DATE: March 20, 2009

AUTHOR: Hilmi Güneş Kayacık

TITLE: CAN THE BEST DEFENSE BE A GOOD OFFENSE? EVOLVING
(MIMICRY) ATTACKS FOR DETECTOR VULNERABILITY
TESTING UNDER A ‘BLACK-BOX’ ASSUMPTION

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: PhD CONVOCATION: May YEAR: 2009

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing) and that all such use is clearly
acknowledged.

iii

Table of Contents

List of Tables . x

List of Figures . xviii

Abstract . xxv

List of Abbreviations and Symbols Used xxvi

Acknowledgements .xxvii

Chapter 1 Introduction . 1

1.1 Motivation and Objectives . 5

1.2 Contributions . 8

1.3 Organization of the Thesis . 12

Chapter 2 Stack Overflows . 15

2.1 Definition . 15

2.2 Components of Stack-based Buffer Overflow Attacks 16

2.2.1 Shellcode . 16

2.2.2 Return Addresses . 19

2.2.3 The NoOP sled . 20

2.3 Discussion . 21

Chapter 3 Background on Detectors and Attacks 23

3.1 Previous Work on Detectors . 23

3.1.1 Misuse Detectors . 23

3.1.2 Anomaly Detectors . 25

3.2 Previous Work on Mimicry Attacks 35

iv

Chapter 4 Intrusion Detection Systems Utilized 42

4.1 Misuse Detectors . 42

4.1.1 Snort . 43

4.2 Anomaly Detectors . 43

4.2.1 Stide . 44

4.2.2 Process Homeostasis (pH) . 45

4.2.3 Process Homeostasis with a Schema Mask (pHsm) 46

4.2.4 The Markov Model-Based Detector 47

4.2.5 Auto-Associative Neural Network 48

Chapter 5 Learning Algorithms Utilized 52

5.1 A Generic Evolutionary Computation Model 53

5.2 Grammatical Evolution . 56

5.2.1 Representation . 57

5.2.2 Training . 59

5.2.3 Fitness Function . 62

5.2.4 Search Operators . 64

5.3 Linear Genetic Programming . 67

5.3.1 Representation . 67

5.3.2 Training . 69

5.3.3 Fitness Function . 70

5.3.4 Search Operators . 70

5.4 Linear Genetic Programming with Pareto Ranking 75

5.4.1 Representation . 76

5.4.2 Training . 76

5.4.3 Fitness Function . 78

5.4.4 Search Operators . 80

Chapter 6 Optimizing Buffer Overflow Characteristics 88

6.1 Background and Motivation . 88

6.2 Methodology . 89

v

6.2.1 Grammatical Evolution . 89

6.2.2 The Vulnerable Application 93

6.2.3 The Detector . 94

6.2.4 Discussion of the Search Space Size 95

6.3 Results . 96

6.4 Discussion of Results . 110

Chapter 7 Evolving Exploits at Assembly Level 111

7.1 Background and Motivation . 111

7.2 Methodology . 112

7.2.1 Fitness Function . 113

7.2.2 Runtime Environment and Fitness Evaluation 114

7.2.3 Linear GP . 116

7.2.4 Discussion of the Search Space Size 119

7.3 Results . 120

7.3.1 Minimal Instruction Set . 121

7.3.2 Extended Instruction Sets . 122

7.4 Discussion of Results . 126

Chapter 8 Evolving Exploits at System Call Level 127

8.1 Background and Motivation . 128

8.2 Methodology . 129

8.2.1 Vulnerable Applications . 132

8.2.2 Linear Genetic Programming 136

8.2.3 Fitness Calculation and Pareto Ranking 139

8.2.4 Discussion of the Search Space Size 146

8.3 Results . 146

8.3.1 Traceroute Box Plots . 153

8.3.2 Restore Box Plots . 158

8.3.3 Samba Box Plots . 162

8.3.4 Ftpd Box Plots . 166

vi

8.4 Training Sensitivity of Anomaly Detectors 170

8.5 A Closer Look at Preambles . 175

8.5.1 Preamble Analysis . 177

8.5.2 Discussion of the Preamble Analysis 179

8.6 Discussion of Results . 180

Chapter 9 Analysis of Mimicry Attacks 183

9.1 Deploying a Mimicry Attack Against Numerous Detectors 184

9.1.1 Analysis of the Anomaly Rates 184

9.1.2 Analysis of the Delays . 189

9.1.3 Discussion of the Analysis Results 192

9.2 Comparing with Mimicry Attacks in Previous Work 193

9.2.1 Comparison with the ftpd Mimicry Attack [105] 194

9.2.2 Comparison with the traceroute Mimicry Attack [34] 197

9.2.3 Discussion of the Analysis Results 203

9.3 Comparison of ‘White-Box’ Attacks 204

9.3.1 The ‘White-Box’ Attacks Against Stide 205

9.3.2 The ‘White-Box’ Attacks Against pH 208

9.3.3 The ‘White-Box’ Attacks Against pHsm 212

9.3.4 The ‘White-Box’ Attacks Against the Markov Model 215

9.3.5 The ‘White-Box’ Attacks Against the Neural Network 216

9.3.6 Discussion of the ‘White-Box’ Search Space Size 221

9.3.7 Discussion of the Analysis Results 223

Chapter 10 Analysis of Vulnerable Applications 225

10.1 Analysis of System Calls and Normal Databases 225

10.1.1 Discussion of the Analysis Results 231

10.2 Analysis of Mimicry Attacks . 232

10.2.1 Attacks Against Stide . 232

10.2.2 Attacks Against pH . 236

10.2.3 Attacks Against pHsm . 241

vii

10.2.4 Attacks Against the Markov Model 248

10.2.5 Attacks Against the Neural Network 252

10.2.6 Summary of the Analysis . 255

10.2.7 Discussion of the Analysis Results 264

Chapter 11 Conclusion . 266

11.1 Contributions . 270

11.2 Discussion of Results . 273

11.3 Guidelines for Detector Research . 279

11.4 Future Research Directions . 280

Bibliography . 282

Appendix A Detector Training Set Analysis 293

A.1 Stide Training Set Analysis . 293

A.2 pH Training Set Analysis . 293

A.3 pH with a Schema Mask Training Set Analysis 296

A.4 Markov Model Training Set Analysis 299

A.5 Neural Network Training Set Analysis 302

Appendix B Best Mimicry Attacks . 305

B.1 Best Mimicry Attacks against Stide 305

B.2 Best Mimicry Attacks against pH . 308

B.3 Best Mimicry Attacks against pH with a Schema Mask 312

B.4 Best Mimicry Attacks against the Markov Model 319

B.5 Best Mimicry Attacks against the Neural Network 327

Appendix C Linux i386 System Calls 336

C.1 Architecture-Dependent System Calls (arch) 337

C.2 File System-Related System Calls (file) 338

C.3 System Calls Related to Inter-Process Communication (ipc) 341

C.4 System Calls Related to Kernel Functions (kernel) 342

viii

C.5 System Calls Related to Memory Management (memory) 346

C.6 System Calls Related to Network Communications (network) 347

ix

List of Tables

4.1 Stide configuration parameters 44

4.2 pH configuration parameters 46

4.3 pHsm configuration parameters 47

4.4 Markov Model parameters . 49

4.5 Auto-associative Neural Network parameters 51

6.1 Grammatical Evolution training parameters 91

6.2 Weights of the four characteristics of a malicious buffer 92

6.3 Malicious buffer types and counts for three experiments 97

7.1 Linear GP instruction set . 117

7.2 Parameter types . 118

7.3 GP parameters . 118

7.4 Number of instructions which the instruction set in Table 7.1
allows . 119

7.5 Evolved attack compared with the core attack from which the
fitness function is developed . 125

8.1 Traceroute normal use cases . 134

8.2 Restore normal use cases . 135

8.3 Samba normal use cases . 136

8.4 ftpd normal use cases . 136

8.5 Genetic Programming Parameters 138

8.6 GP instruction set for the traceroute application 140

8.7 GP instruction set for the ftpd application 141

8.8 GP instruction set for the restore application 142

8.9 GP instruction set for the samba application 143

x

8.10 Anomaly rate of the preamble component of the attacks (both
original and mimicry) . 148

8.11 Anomaly rate of the original exploits 148

8.12 Anomaly rate of the original attacks 148

8.13 Anomaly rate of the best mimicry exploits 149

8.14 Anomaly rate of the best mimicry attacks 149

8.15 Delay associated with the preamble component of the attacks
(both original and mimicry) . 152

8.16 Delay associated with the original exploits 152

8.17 Delay associated with the original attacks 152

8.18 Delay associated with the best mimicry exploits 152

8.19 Delay associated with the best mimicry attacks 153

8.20 Best mimicry exploit lengths generated against five anomaly de-
tectors in terms of system calls 153

8.21 Attributes of the original traceroute attack preamble 157

8.22 Attributes of the original restore attack preamble 161

8.23 Attributes of the original samba attack preamble 165

8.24 Attributes of the original ftpd attack preamble 166

8.25 Anomaly rates reported by Stide with different training combi-
nations for traceroute . 171

8.26 Anomaly rates reported by Stide with different training combi-
nations for samba . 172

8.27 Anomaly rates reported by Stide with different training combi-
nations for restore . 172

8.28 Anomaly rates reported by Stide with different training combi-
nations for ftpd . 173

8.29 Ratio of mismatches for the original traceroute attack 177

8.30 Ratio of mismatches for the original restore attack 178

8.31 Ratio of mismatches for the original samba attack 178

xi

8.32 Ratio of mismatches for the original ftpd attack 178

9.1 Anomaly rates of the exploits generated against Stide, tested on
the pH, pHsm, Markov Model and Neural Network
detectors . 185

9.2 Anomaly rates of the attacks generated against Stide, tested on
the pH, pH with a schema mask, Markov Model and Neural
Network detectors . 185

9.3 Anomaly rates of the exploits generated against pH, tested on
the Stide, pHsm, Markov Model and Neural Network
detectors . 186

9.4 Anomaly rates of the attacks generated against pH, tested on
the Stide, pHsm, Markov Model and Neural Network
detectors . 186

9.5 Anomaly rates of the exploits generated against pHsm, tested
on the Stide, pH, Markov Model and Neural Network
detectors . 186

9.6 Anomaly rates of the attacks generated against pHsm, tested on
the Stide, pH, Markov Model and Neural Network detectors . . 187

9.7 Anomaly rates of the exploits generated against the Markov
Model detector, tested on the Stide, pH, pHsm and Neural Net-
work detectors . 187

9.8 Anomaly rates of the attacks generated against the Markov Model
detector, tested on the Stide, pH, pHsm and Neural Network de-
tectors . 188

9.9 Anomaly rates of the exploits generated against the Neural Net-
work detector, tested on the Stide, pH, pHsm and Markov Model
detectors . 188

9.10 Anomaly rates of the attacks generated against the Neural Net-
work detector, tested on the Stide, pH, pHsm and Markov Model
detectors . 188

9.11 Delays for the exploits generated against Stide 189

9.12 Delays for the attacks generated against Stide 189

9.13 Delays for the exploits generated against pH 190

xii

9.14 Delays for the attacks generated against pH 190

9.15 Delays for the exploits generated against pHsm 190

9.16 Delays for the attacks generated against pHsm 191

9.17 Delays for the exploits generated against the Markov Model de-
tector . 191

9.18 Delays for the attacks generated against the Markov Model de-
tector . 191

9.19 Delays for the exploits generated against the Neural Network
detector . 192

9.20 Delays for the attacks generated against the Neural Network
detector . 192

9.21 Exploit lengths of the best ftpd mimicry exploits compared with
the mimicry exploit provided by Wagner et al. [105] and the
original ftpd exploit [5] . 195

9.22 Anomaly rates for the best ftpd mimicry attacks compared with
the mimicry attack provided by Wagner et al. [105] and the
original ftpd attack [5] . 196

9.23 Anomaly rates for the best ftpd mimicry exploits compared with
the mimicry exploit provided by Wagner et al. [105] and the
original ftpd exploit [5] . 197

9.24 Delays for the best ftpd mimicry attacks compared with the
mimicry attack provided by Wagner et al. [105] and the original
ftpd attack [5] . 198

9.25 Delays for the best ftpd mimicry exploits compared with the
mimicry exploit provided by Wagner et al. [105] and the original
ftpd exploit [5] . 198

9.26 Exploit length for the best traceroute mimicry exploits compared
with the mimicry exploit provided by Giffin et al. [34] and the
original traceroute exploit [2] 199

9.27 Anomaly rates for the best traceroute mimicry attacks compared
with the mimicry attack provided by Giffin et al. [34] and the
original traceroute attack [2] 200

xiii

9.28 Anomaly rates for the best traceroute mimicry exploits com-
pared with the mimicry exploit provided by Giffin et al. [34]
and the original traceroute exploit [2] 201

9.29 Delays for the best traceroute mimicry attacks compared with
the mimicry attack provided by Giffin et al. [34] and the original
traceroute attack [2] . 202

9.30 Delays for the best traceroute mimicry exploits compared with
the mimicry exploit provided by Giffin et al. [34] and the original
traceroute exploit [2] . 202

9.31 Lengths of the exploits generated against five anomaly detectors
in terms of system calls . 205

9.32 Anomaly rates for the exploits generated against Stide by us-
ing the ‘white-box’ approach, tested against the five anomaly
detectors utilized in this work 206

9.33 Anomaly rates for the attacks generated against Stide by us-
ing the ‘white-box’ approach, tested against the five anomaly
detectors utilized in this work 207

9.34 Delays for the exploits generated against Stide by using the
‘white-box’ approach . 207

9.35 Delays for the attacks generated against Stide by using the ‘white-
box’ approach . 207

9.36 An example sequence for which Stide and pH are trained . . . 208

9.37 The Stide normal database which was trained on the sequence
provided in Table 9.36 . 208

9.38 The pH normal database, which was trained on the sequence
provided in Table 9.36 . 209

9.39 Anomaly rates for the exploits generated against pH by using the
‘white-box’ approach, tested against the five anomaly detectors
utilized in this work . 210

9.40 Anomaly rates for the attacks generated against pH by using the
‘white-box’ approach, tested against the five anomaly detectors
utilized in this work . 211

9.41 Delays for the exploits generated against pH by using the ‘white-
box’ approach . 211

xiv

9.42 Delays for the attacks generated against pH by using the ‘white-
box’ approach . 211

9.43 Anomaly rates for the exploits generated against pHsm by us-
ing the ‘white-box’ approach, tested against the five anomaly
detectors utilized in this work 213

9.44 Anomaly rates for the attacks generated against pHsm by us-
ing the ‘white-box’ approach, tested against the five anomaly
detectors utilized in this work 213

9.45 Delays for the exploits generated against pHsm by using the
‘white-box’ approach . 214

9.46 Delays for the attacks generated against pHsm by using the
‘white-box’ approach . 214

9.47 Anomaly rates for the exploits generated against the Markov
Model detector by using the ‘white-box’ approach, tested against
the five anomaly detectors utilized in this work 216

9.48 Anomaly rates for the attacks generated against the Markov
Model detector by using the ‘white-box’ approach, tested against
the five anomaly detectors utilized in this work 216

9.49 Delays for the exploits generated against the Markov Model de-
tector by using the ‘white-box’ approach 217

9.50 Delays for the attacks generated against the Markov Model de-
tector by using the ‘white-box’ approach 217

9.51 Anomaly rates for the exploits generated against the Neural Net-
work detector by using the ‘white-box’ approach, tested against
the five anomaly detectors utilized in this work 218

9.52 Anomaly rates for the attacks generated against the Neural Net-
work detector by using the ‘white-box’ approach, tested against
the five anomaly detectors utilized in this work 219

9.53 Delays for the exploits generated against the Neural Network
detector by using the ‘white-box’ approach 219

9.54 Delays for the attacks generated against the Neural Network
detector by using the ‘white-box’ approach 220

10.1 A summary of the system calls collected for traceroute, restore,
samba and ftpd . 227

xv

10.2 The analysis of the detector normal behaviour data structures
for the traceroute, restore, samba and ftpd applications 227

10.3 System call counts and percentages for traceroute 228

10.4 System call counts and percentages for restore 228

10.5 System call counts and percentages for samba 229

10.6 System call counts and percentages for ftpd 230

10.7 An overview of the attacks generated by GP on traceroute . . . 257

10.8 An overview of the attacks generated by GP on restore 259

10.9 An overview of the attacks generated by GP on samba 261

10.10 An overview of the attacks generated by GP on ftpd 262

A.1 Anomaly rates reported by pH with different training combina-
tions for traceroute . 293

A.2 Anomaly rates reported by pH with different training combina-
tions for samba . 293

A.3 Anomaly rates reported by pH with different training combina-
tions for restore . 294

A.4 Anomaly rates reported by pH with different training combina-
tions for ftpd . 295

A.5 Anomaly rates reported by pH with a schema mask with different
training combinations for traceroute 296

A.6 Anomaly rates reported by pH with a schema mask with different
training combinations for samba 296

A.7 Anomaly rates reported by pH with a schema mask with different
training combinations for restore 297

A.8 Anomaly rates reported by pH with a schema mask with different
training combinations for ftpd 298

A.9 Anomaly rates reported by the Markov Model detector with dif-
ferent training combinations for traceroute 299

A.10 Anomaly rates reported by the Markov Model detector with dif-
ferent training combinations for samba 299

xvi

A.11 Anomaly rates reported by the Markov Model detector with dif-
ferent training combinations for restore 300

A.12 Anomaly rates reported by the Markov Model detector with dif-
ferent training combinations for ftpd 301

A.13 Anomaly rates reported by the Neural Network detector with
different training combinations for traceroute 302

A.14 Anomaly rates reported by the Neural Network detector with
different training combinations for samba 302

A.15 Anomaly rates reported by the Neural Network detector with
different training combinations for restore 303

A.16 Anomaly rates reported by the Neural Network detector with
different training combinations for ftpd 304

xvii

List of Figures

2.1 Common buffer overflow exploit 17

2.2 Example of a stack buffer overflow 21

4.1 An auto-associative neural network 50

5.1 A sample GE grammar . 58

5.2 The sample individual in genotype format 58

5.3 Sample GP instruction set and parameters 68

5.4 An example of a genotype-phenotype mapping for a linear GP
individual . 68

6.1 A simple C grammar for generating programs which assemble
the malicious buffer . 90

6.2 The vulnerable application which was developed for the exper-
iments . 94

6.3 Fitness, NoOP sled size and the desired return address size of
the population in the last generation in the experiments without
niching . 98

6.4 Fitness, NoOP sled size and the desired return address size of
the population in the last generation in the experiments with
niching . 99

6.5 Fitness, NoOP sled size and the desired return address size of
the population in the last generation in the experiments with
niching and NoOP minimization 100

6.6 Fitness, NoOP sled size and the accuracy of the desired return
address of the population in the last generation in the experi-
ments without niching . 101

6.7 Fitness, NoOP sled size and the accuracy of the desired return
address of the population in the last generation in the experi-
ments with niching . 102

xviii

6.8 Fitness, NoOP sled size and the accuracy of the desired return
address of the population in the last generation in the experi-
ments with niching and NoOP minimization 103

6.9 Mean raw fitness of the population over 500 generations 104

6.10 Mean NoOP size for viable and undetected attacks over 500
generations . 105

6.11 Fitness, NoOP size and alert counts of the population in the
last generation in the experiments without niching 106

6.12 Fitness, NoOP size and alert counts of the population in the
last generation in the experiments with niching 107

6.13 Fitness, NoOP size and alert counts of the population in the
last generation in the experiments with niching and NoOP min-
imization . 108

6.14 The Snort signature for detecting x86 NoOP sleds 108

6.15 Average alert count for viable and undetectable attacks for the
three sets of experiments . 109

7.1 Calling the execve system call from a C program 113

7.2 Basic fitness function for establishing correct behaviour for the
‘execve’ exploit . 115

7.3 Virtual runtime environment for fitness evaluation 116

7.4 Likelihood box plot of executing an attack with and without
the additional fitness objective 121

7.5 Population diversity box plot with and without the additional
fitness objective . 122

7.6 Box plot of mean fitness averaged over 20 runs 123

7.7 Box plot of hit count averaged over 20 runs 124

7.8 Box plot of mean likelihood of exploit execution averaged over
20 runs . 124

8.1 Fitness function for establishing the objectives of modifying the
UNIX password file . 145

xix

8.2 Locality frame counts and the associated delays 151

8.3 Box plot of the mimicry exploit anomaly rate for
traceroute . 154

8.4 Box plot of the mimicry attack anomaly rate for traceroute . . 155

8.5 Box plot of the mimicry exploit delay for traceroute 155

8.6 Box plot of the mimicry attack delay for traceroute 156

8.7 Box plot of the mimicry exploit length for traceroute 156

8.8 Box plot of the mimicry exploit anomaly rate for restore . . . 158

8.9 Box plot of the mimicry attack anomaly rate for restore 159

8.10 Box plot of the mimicry exploit delay for restore 159

8.11 Box plot of the mimicry attack delay for restore 160

8.12 Box plot of the mimicry exploit length for restore 160

8.13 Box plot of the mimicry exploit anomaly rate for samba 162

8.14 Box plot of the mimicry attack anomaly rate for samba 163

8.15 Box plot of the mimicry exploit delay for samba 163

8.16 Box plot of the mimicry attack delay for samba 164

8.17 Box plot of the mimicry exploit length for samba 164

8.18 Box plot of the mimicry exploit anomaly rate for ftpd 167

8.19 Box plot of the mimicry attack anomaly rate for ftpd 167

8.20 Box plot of the mimicry exploit delay for ftpd 168

8.21 Box plot of the mimicry attack delay for ftpd 168

8.22 Box plot of mimicry exploit length for ftpd 169

9.1 The ftpd mimicry attack by Wagner et al. [105] 195

9.2 The traceroute mimicry attack by Giffin et al. [34] 199

9.3 The list of sequences of length 4 permitted by the pH normal
database . 209

xx

10.1 Box plot of the mimicry exploit anomaly rates for Stide on
traceroute, restore, samba and ftpd 233

10.2 Box plot of the mimicry attack anomaly rates for Stide on
traceroute, restore, samba and ftpd 233

10.3 Box plot of the mimicry exploit lengths for Stide on traceroute,
restore, samba and ftpd . 234

10.4 Box plot of the mimicry exploit anomaly rates for pH on tracer-
oute, restore, samba and ftpd 237

10.5 Box plot of the mimicry attack anomaly rates for pH on tracer-
oute, restore, samba and ftpd 237

10.6 Box plot of the mimicry exploit delays for pH on traceroute,
restore, samba and ftpd . 238

10.7 Box plot of the mimicry attack delays for pH on traceroute,
restore, samba and ftpd . 238

10.8 Box plot of the mimicry exploit lengths for pH on or traceroute,
restore, samba and ftpd . 239

10.9 Box plot of the mimicry exploit anomaly rates for pHsm on
traceroute, restore, samba and ftpd 242

10.10 Box plot of the mimicry exploit anomaly rates for pHsm (mask
unknown) on traceroute, restore, samba and ftpd 242

10.11 Box plot of the mimicry attack anomaly rates for pHsm on
traceroute, restore, samba and ftpd 243

10.12 Box plot of the mimicry attack anomaly rates for pHsm (mask
unknown) on traceroute, restore, samba and ftpd 243

10.13 Box plot of the mimicry exploit delays for pHsm on traceroute,
restore, samba and ftpd . 244

10.14 Box plot of the mimicry exploit delays for pHsm (mask un-
known) on traceroute, restore, samba and ftpd 244

10.15 Box plot of the mimicry attack delays for pHsm on traceroute,
restore, samba and ftpd . 245

10.16 Box plot of the mimicry attack delays for pHsm (mask un-
known) on traceroute, restore, samba and ftpd 245

xxi

10.17 Box plot of the mimicry exploit lengths for pHsm on traceroute,
restore, samba and ftpd . 246

10.18 Box plot of the mimicry exploit anomaly rates for the Markov
Model detector on traceroute, restore, samba and ftpd 249

10.19 Box plot of the mimicry attack anomaly rates for the Markov
Model detector on traceroute, restore, samba and ftpd 249

10.20 Box plot of the mimicry exploit lengths for the Markov Model
detector on traceroute, restore, samba and ftpd 250

10.21 Box plot of the mimicry exploit anomaly rates for the Neural
Network detector on traceroute, restore, samba and ftpd . . . 253

10.22 Box plot of the mimicry attack anomaly rates for the Neural
Network detector on traceroute, restore, samba and ftpd . . . 253

10.23 Box plot of the mimicry exploit lengths for the Neural Network
detector on traceroute, restore, samba and ftpd 254

10.24 Box plot of the system call indices for the traceroute
exploits . 258

10.25 Box plot of the system call indices for the restore exploits . . 260

10.26 Box plot of the system call indices for the samba exploits . . 260

10.27 Box plot of the system call indices for the ftpd exploits 263

B.1 The best mimicry attack against Stide for traceroute 305

B.2 The best mimicry attack against Stide for samba 306

B.3 The best mimicry attack against Stide for restore 307

B.4 The best mimicry attack against Stide for ftpd 307

B.5 The best mimicry attack against pH for traceroute 308

B.6 The best mimicry attack against pH for samba
(first part) . 309

B.7 The best mimicry attack against pH for samba
(second part) . 310

B.8 The best mimicry attack against pH for restore 311

B.9 The best mimicry attack against pH for ftpd 311

xxii

B.10 The best mimicry attack against pHsm for traceroute 312

B.11 The best mimicry attack against pHsm for samba
(first part) . 313

B.12 The best mimicry attack against pHsm for samba
(second part) . 314

B.13 The best mimicry attack against pHsm for restore
(first part) . 315

B.14 The best mimicry attack against pHsm for restore
(second part) . 316

B.15 The best mimicry attack against pHsm for ftpd (first part) . . 317

B.16 The best mimicry attack against pHsm for ftpd
(second part) . 318

B.17 The best mimicry attack against the Markov Model for tracer-
oute (first part) . 319

B.18 The best mimicry attack against the Markov Model for tracer-
oute (second part) . 320

B.19 The best mimicry attack against the Markov Model for samba
(first part) . 321

B.20 The best mimicry attack against the Markov Model for samba
(second part) . 322

B.21 The best mimicry attack against the Markov Model for restore
(first part) . 323

B.22 The best mimicry attack against the Markov Model for restore
(second part) . 324

B.23 The best mimicry attack against the Markov Model for ftpd
(first part) . 325

B.24 The best mimicry attack against the Markov Model for ftpd
(second part) . 326

B.25 The best mimicry attack against the Neural Network for tracer-
oute (first part) . 327

B.26 The best mimicry attack against the Neural Network for tracer-
oute (second part) . 328

xxiii

B.27 The best mimicry attack against the Neural Network for tracer-
oute (third part) . 329

B.28 The best mimicry attack against the Neural Network for samba
(first part) . 330

B.29 The best mimicry attack against the Neural Network for samba
(second part) . 331

B.30 The best mimicry attack against the Neural Network for restore
(first part) . 332

B.31 The best mimicry attack against the Neural Network for restore
(second part) . 333

B.32 The best mimicry attack against the Neural Network for ftpd
(first part) . 334

B.33 The best mimicry attack against the Neural Network for ftpd
(second part) . 335

xxiv

Abstract

This thesis proposes a ‘black-box’ approach for automating attack generation by way

of Evolutionary Computation. The proposed ‘black-box’ approach employs just the

anomaly rate or detection feedback from the detector. Assuming a ‘black-box’ access

in vulnerability testing presents a scenario different from a ‘white-box’ access assump-

tion, since the attacker does not posses sufficient knowledge to constrain the scope

of the attack. As such, this thesis contributes by providing a ‘black-box’ vulnera-

bility testing tool for identifying detector weaknesses and aiding detector research in

designing detectors which are robust against evasion attacks.

The proposed approach focuses on stack buffer overflow attacks on a 32-bit Intel

architecture and aims to optimize the various characteristics of the attack. Three

components exist in a common stack buffer overflow attack: the shellcode, NoOP and

return address components. Therefore, automation of attack generation is realized in

three stages: (1) identifying the suitable NoOP and return address components, (2)

designing the shellcode at the assembly level, and (3) designing the shellcode at the

system call level. The first and second stage address the evasion of misuse detectors

by employing obfuscation, whereas the third stage addresses the evasion of anomaly

detectors by employing mimicry attacks.

In short, the proposed approach takes the form of a ‘black-box’ search process

where the attacks are rewarded according to two main criteria: (a) their ability to

carry out the malicious intent, while (b) minimizing or eliminating the detectable

attack characteristics. Furthermore, it is demonstrated that there are two parts to

buffer overflow attacks: (i) the preamble and (ii) the exploit. Therefore, the anomaly

rate of the whole attack is calculated on both parts. Additionally, the proposed

approach supports multi-objective optimization, where multiple characteristics of at-

tacks can be improved. The proposed approach is evaluated against six detectors

and four vulnerable applications. The results show that attacks which the proposed

approach generates under a ‘black-box’ assumption are as effective as the attacks

generated under a ‘white-box’ assumption adopted by previous work.

xxv

List of Abbreviations and Symbols Used

EC Evolutionary Computing

EIP Extended Instruction Pointer

FSA Finite State Automata

GA Genetic Algorithm

GCC GNU C Compiler

GDB GNU Project Debugger

GE Grammatical Evolution

GP Genetic Programming

IDS Intrusion Detection System

NoOP No OPeration instruction

pH Process Homeostasis

pHsm pH with a schema mask

SVM Support Vector Machine

xxvi

Acknowledgements

I would like to thank my supervisors Dr. Nur Zincir-Heywood and Dr. Malcolm

Heywood for their continuous guidance and support throughout my graduate studies.

I consider myself to be tremendously lucky to have worked with them. Although my

PhD studies may be coming to an end, they will always remain as my mentors.

Furthermore, my sincere thanks are due to my committee members, Dr. Denis

Riordan, Dr. Qigang Gao and my external examiner Dr. Anil Somayaji for their

valuable feedback, which undoubtedly improved the quality of this thesis.

I was fortunate to be funded by numerous organizations. In particular, I wish

to express my gratitude to Canada Foundation for Innovation (CFI), Killam Trusts,

Mathematics of Information Technology and Complex systems (MITACS), Natural

Sciences and Engineering Research Council of Canada (NSERC), Pre-Competitive

Advanced Research Network (PRECARN), SwissCom Innovations AG and Telecom

Applications Research Alliance (TARA).

My final and most heartfelt thanks go to my mother Rüveyde Kayacık and my

father Zeki Kayacık for always being there for me. Words can’t express my gratitude

to them for their love, encouragement and support. This thesis is dedicated to them.

xxvii

Chapter 1

Introduction

Software vulnerabilities have been around since the existence of software. One of

the more memorable consequences of software vulnerabilities was the Morris Worm

in 1988, which exploited various vulnerabilities in UNIX TCP/IP software [71] and

brought down over 6000 servers across the Internet and caused a major disruption

[85]. On the SecurityFocus (former Bugtraq) website, the vulnerabilities which the

Morris worm exploited were the first to be documented1. As of this writing (January

2009), SecurityFocus vulnerability archives have over 33,000 posts (based upon the

Bugtraq IDs), which implies that tens of thousands of software vulnerabilities have

been found (and some have been widely exploited) over the last twenty years.

In general, attacks have one to one relationships with software vulnerabilities

since the exploit mechanism depends on the vulnerability type. However, if the

software vulnerability is present on multiple platforms (e.g. same web server running

on different operating systems), multiple versions of an attack can be developed to

exploit the same vulnerability on different platforms.

Various software vulnerability types exist such as design flaws, buffer overflows,

format string attacks, input validation errors and race conditions [80]. Among these,

buffer overflow is one of the major causes of vulnerabilities [12] and is of interest in

this thesis. Buffer overflows are the result of software deficiencies due to programmer

errors such as the improper handling of memory, inputs and outputs. For the attack-

ers, buffer overflows are an important tactic which leads to various serious threats

such as vandalism, fraud, identity theft, intellectual property theft, or many other

types of crime.

Software testing [78] [42] is crucial for identifying and addressing the problems

1The SecurityFocus vulnerability archives can be accessed at http://www.securityfocus.com/.

A search for the vulnerability with Bugtraq ID 1 will bring up the vulnerability which the Morris

worm exploited.

1

http://www.securityfocus.com/

2

in the software before it is released. Software testing can be defined as an empirical

investigation conducted to gather information on the quality of the software. It in-

volves various testing methods such as volume testing, stress testing, storage testing

or vulnerability testing. In particular, vulnerability testing aims to find and eliminate

as many vulnerabilities as possible within the limitations of time and resources. How-

ever, finding and eliminating every vulnerability in software is very difficult because

the tester would have to provide every possible input and follow every execution path

[78]. Even though the test eliminates numerous vulnerabilities, it does not guarantee

that other vulnerabilities unknown to the tester do not exist [74], therefore the pru-

dent strategy is to deploy defensive techniques to prevent attackers from exploiting a

vulnerability, should they find one.

Today’s Defensive Techniques

Depending upon their function, defensive techniques can be categorized into two

groups as discussed below.

1. Static defenses: Static defense techniques are analogous to the fences around

the premises of a building. In other words, static defensive techniques are

intended to provide barriers to attacks. Keeping operating systems and other

software up-to-date and deploying firewalls at entry points are examples of

static defense solutions. Frequent software updates can remove the software

vulnerabilities which are susceptible to exploits. Firewalls provide access control

at the entry point to keep intruders out rather than catching them. Therefore,

they function in much the same way as a physical gate on a house. Static defense

techniques are the first line of defense; they are relatively easy to deploy and

provide significant defense improvement compared with the initial unguarded

state of the computer network. Moreover they act as the foundation for more

sophisticated defense techniques.

2. Dynamic defenses: It is safe to assume that no system is totally foolproof

and that attackers are always one step ahead in finding security holes in cur-

rent systems. Furthermore, although software updates eliminate some of the

3

existing software vulnerabilities, they may introduce new vulnerabilities to the

software. Therefore, dynamic defenses accompany the static defenses to provide

comprehensive information about the state of the computer networks and con-

nected systems. Dynamic defense techniques are analogous to burglar alarms,

which monitor the premises to find evidence of break-ins. Built upon static

defense techniques, dynamic defense operations aim to catch the attacks and

log information about the incidents such as the source and nature of the attack.

Intrusion detection systems are examples of dynamic defense techniques [20].

An intrusion detection system (IDS) is a combination of software and hardware,

which collects and analyses data from networks and hosts to determine if there

is an attack [1]. Different detection techniques can be employed to search for

evidence of intrusions. To this end, two major categories exist for detection

techniques: misuse and anomaly detection.

(a) Misuse detection: Misuse detection systems use a priori knowledge on

attacks to look for traces of attacks. In other words, they detect intru-

sions by employing a description of the misuse [51]. Signature (rule)-based

systems are the most common examples of misuse detection systems. In

signature-based detection, attack signatures are sought in the monitored

resource. Signature-based systems, by definition, are very accurate for

known attacks which are included in their signature database. Moreover,

since signatures are associated with specific misuse behaviour, it is easy

to determine the attack type. However, their detection capabilities are

limited to those within the signature database. As new attacks are dis-

covered, a signature database requires continuous updating to include the

new attack signatures.

(b) Anomaly detection: Anomaly detectors adopt the opposite approach,

which is, to know what is normal, and then find the deviations from normal

behaviour. These deviations are considered as anomalies or possible intru-

sions. Anomaly detection systems rely on knowledge of normal behaviour

to detect any attacks. Therefore, attacks – including unknown (0-day)

attacks – are detected as long as the attack behaviour deviates sufficiently

4

from the normal behaviour. However, if the attack is similar to the normal

behaviour, it may not be detected. As opposed to misuse detection, it is

difficult to associate deviations with specific attacks since the detection is

based upon the deviation from normal behaviour, not upon the similar-

ity to an attack signature. As the users change their behaviour, normal

behaviour should be redefined to ensure effective detection and low false

positives.

Who Defends the defenses?

The defense methods discussed above, including the detectors, are by no means in-

fallible. Software vulnerabilities and hardware faults can cause them to malfunction.

In addition to traditional software errors, detectors are also susceptible to detector-

specific vulnerabilities such as misconfigurations, blind-spots and deficiencies in de-

tection methodology. Sophisticated attackers try to deploy attacks without getting

detected. To this end, they use these detector vulnerabilities and alter their actions

to evade detection, rendering the detector ineffective.

In the case of misuse detectors, the attackers analyse the signatures and create

evasion attacks to avoid triggering the signatures. Alternatively, they generate smoke-

screen activity to increase the false alarms, hence overwhelming the detector and the

system administrator. In the case of anomaly detectors, the attackers camouflage

their attacks to resemble normal behaviour.

Detector vulnerability testing is important for identifying and eliminating detec-

tor weaknesses before attackers can get a chance to exploit them. It is a relatively

new area compared with similar tests on cryptographic protocols. Such vulnerability

testing efforts can be considered as ‘white-hat’ (i.e. ethical) hacking, where the ob-

jective is to establish the limitations of detection methodologies and to find detector

vulnerabilities before the attackers. Knowing the limitations of the defenses at hand

enables the defenders to make better decisions on the design of the defenses which

protect the networks and the connected hosts.

5

1.1 Motivation and Objectives

Although the vulnerability testing methodology may differ based upon the target de-

tector to be tested, the common task is to craft the inputs to the detector carefully in

order to observe the false positive and detection rates. If the detector generates many

false positives when there is no attack, this implies that the detector configuration

needs to be revised to reduce false alarms. Similarly, if the detector does not detect

the attack when the attack is deployed, this implies that the detection technique

should be revised to be more sensitive to the attack. In particular, this thesis focuses

on vulnerability testing of the detectors on evasion attacks, where the objective of

the ‘white-hat’ attackers is to modify the attack to make their actions go unnoticed

by both misuse and anomaly detectors.

Various techniques exist for generating evasion attacks [100]. The attacker can

try to avoid detection by expanding the attack over time or space in the input stream

of the detector to make it more difficult for the malicious events to be correlated.

Against misuse detectors, the attacker can obfuscate the attack so that the attack

payload does not match any detection signatures. Alternatively, the attackers can take

advantage of ambiguities in the network protocols to deploy their attacks or deploy

a denial of service attack against the detector to overwhelm it. Against anomaly

detectors, the attackers can deploy mimicry attacks, in which the attacks mimic the

‘normal’ definition of the application behaviour or ‘valid’ network traffic to evade

detection. Within this categorization, the ‘black-box’ framework proposed in this

thesis is employed as a technique for obfuscation and mimicry attack generation. The

term ‘black-box’ means that the detector is viewed in terms of its input and output

without any knowledge on its internal workings. Conversely, ‘white-box’ implies that

the internal workings of the detector are available.

Previously, several researchers have identified a number of evasion attacks on

network-based detectors employing misuse detection [82] [73] [102] [48] and host-

based detectors employing anomaly detection [105] [99] [96] [98] [32] [56] [34].

Research on evading misuse detectors aims to minimize or entirely eliminate the

components which trigger detection signatures by employing a ‘white-box’ approach.

6

Previous efforts [82] [73] [102] on evasion attacks against misuse detectors have em-

ployed various techniques such as packet splitting or polymorphism to encrypt the

attack payload. This thesis addresses the evasion of misuse detectors by obfuscating

the payload and by minimizing the detectable characteristics of the attacks.

In terms of evading anomaly detection, the evasion approach proposed in this

thesis is based upon the generation of mimicry attacks. A mimicry attack is an

exploit crafted by producing a legitimate sequence of system calls while performing

malicious actions, typically by making use of a template denoting the original core

attack [56]. In terms of evading anomaly detectors, previous efforts [105] [99] [96] [98]

[32] [56] [34] assumed a ‘white-box’ access to the target detector. This has resulted in

very efficient algorithms for designing mimicry exploits. In particular, such research

has for the most part concentrated on the Stide open source host-based anomaly

detector [30] or its improved versions [89] [27] [103] [110] [26]. The design of exploits

then boils down to locating sequences of system calls which both match the contents

of an anomaly detector’s normal behaviour database whilst reaching the behavioural

objectives of the original ‘core’ exploit. The behavioural objectives of the ‘core’ exploit

can be considered to be general and thus more synonymous with a general behavioural

objective. For example, the attacker might have the ‘core’ objective of opening the

password file creating a user account and closing the file. From the perspective of

most anomaly detection systems, this process amounts to the detection of an open-

write-close sequence of system calls – a process which will be demonstrated later on

in this thesis to be rather difficult to achieve without compromising the ability of the

detector to avoid misclassification of normal behaviours.

Can an attacker evade detection using a ‘black-box’ access?

Assuming a ‘white-box’ approach implies that the ‘internal’ knowledge necessary to

design such an evasion methodology is extensive and may not be available for all

detectors, such as in the case of commodity detectors or in the case where the detec-

tors have complex normal behaviour databases (e.g. neural networks with numerous

neurons and associated weight values). Even though it is fairly realistic to assume

that the attacker can obtain a copy of the detector, obtaining internal knowledge

7

such as the detection methodology, a snapshot of the normal behaviour database or

detector parameters may not always be possible. Furthermore, a ‘white-box’ analysis

places emphasis on the analyser to define the problem based upon his/her knowledge

of the detector and its internal data structures. Therefore, ‘white-box’ testing has

the potential to introduce bias into the test methodology [81] [21].

Can an attacker evade detection completely?

The relevant work on vulnerability testing of anomaly detectors [105] [99] [96] [32] [56]

[34] assumed that either (1) at the break-in stage, attackers can gain control of the

vulnerable application without raising alarms, which reaches to a level which results in

detection, or (2) attackers have already gained control of the victim system. Although

the attackers can alter their exploit after gaining full control, no consideration was

given as to whether the combination of the break-in and exploit would increase the

anomaly rate [46] [47]. In this thesis, the break-in stage, during which the attacker

tries to gain control of the vulnerable application, is called the preamble. After the

attacker gains control of the application, he/she injects a payload, which is called the

exploit, to carry out the attack objectives such as spawning a UNIX shell. Therefore,

mimicry attacks are comprised of two components: the preamble and the exploit.

Thus, the anomaly rate is calculated not only on the exploit but also on the entire

attack, which contains the anomalies from the preamble. As such, the performance

evaluation reflects the ability of the detector to detect attacks as a whole (as would be

the case in practice) as opposed to limiting evaluation to detecting the exploit alone;

the latter biasing the evaluation in favour of the attacker and giving a misleading

impression of detector vulnerability to mimicry exploits.

Is it sufficient to optimize a single objective?

The relevant efforts on evading anomaly detectors focus mainly on reducing the

anomaly rate of an attack. However, anomaly detectors such as Process Homeostasis

(pH) [91] look not only at the number of anomalous events but also at the distribution

of the anomalous events. Furthermore, the attacker may have additional constraints

8

due to the size of the vulnerable buffer and the nature of the vulnerability. There-

fore detector vulnerability testing involves optimizing numerous characteristics and

achieving multiple attack objectives. The approach proposed in this thesis can sup-

port the optimization of multiple objectives of an attack and therefore can lead to a

more realistic vulnerability analysis.

The contributions of this thesis discussed in the next section aim to answer the

above-stated questions while addressing the prevalent issues with detector vulnera-

bility testing.

1.2 Contributions

As discussed in Section 1.1, the objective of the ‘white-hat’ attacker is to craft the

input to the detector with the purpose of evading detection. If the ‘white-hat’ attacker

can find an input with better detection characteristics (i.e. evading the detector

completely or improving the chances of evasion by reducing the anomaly rates and

eliminating the detectable attributes), it implies that the detector is susceptible to

evasion attacks. Therefore the contributions of this thesis can be discussed in six

categories.

An Artificial Arms Race

The proposed approach represents an arms race between artificial ‘white-hat’ attack-

ers and numerous detectors. The arms race rewards the attacker as it builds successful

attacks which can defeat the target detector. In such an arms race, the detector re-

sponds to the attacks by providing a detection feedback in the form of anomaly rates

or other detection information such as number of alerts. Consequently, the attacker

utilizes the detection feedback to build evasion attacks which achieve the objectives

of the attacker while minimizing the detection from the target detector. The main

product of the arms race is a set of evasion attacks which can evade the target de-

tector. The resulting attacks provide the defenders crucial information which can be

utilized to eliminate the weaknesses of the target detector.

9

Access to the Detector

As opposed to the previous research which assumed a ‘white-box’ approach against

anomaly detectors [105] [99] [96] [98] [32] [56] [34], this thesis assumes a ‘black-box’

approach to evasion attack generation. As such the feedback from the detector is lim-

ited to the detector outputs such as the anomaly rate and the delay, which are readily

provided to the user as part of normal operation (typically for the establishment of

thresholds to optimize false positive and detection rates under real world conditions).

Hence no use is made of the internal data structures or algorithmic details specific to

a particular detector. Design of exploits takes the form of a search process in which

the anomaly rate or the detection information from the detector is used as the only

guide to the effectiveness of the exploit. To do so efficiently requires a greater em-

phasis on the deployment of suitable stochastic search processes, whereas under the

‘white-box’ model, an exhaustive (greedy) search is sufficient given the availability

of suitable a priori information to direct the search process against, for example, a

specific data structure internal to the detector.

Consequently, the proposed ‘black-box’ approach provides a framework in which

numerous detectors can be tested without the need for utilizing internal knowledge

of the detector. Thus, this thesis expands the applicability of vulnerability testing

beyond the limited scenario in which the internal knowledge of the detector is known.

Furthermore, such a ‘black-box’ approach can be utilized for the analysis of the detec-

tor parameterization. In particular, when anomaly detectors are deployed on different

platforms, the suitable configuration parameters, which provide the best attack de-

tection with minimum false alarms must be determined. To this end, the proposed

‘black-box’ approach can be deployed against different detector configurations to de-

termine suitable configuration parameters for deploying detectors, such as the proper

sliding window lengths or training sets.

Analysis of ‘Normal Behaviour’

In the case of evading anomaly detectors, the attacker aims to camouflage the mali-

cious code by altering the attack so that the anomaly detector recognizes it as normal

behaviour. Although the definition of ‘normal behaviour’ is not a straightforward

10

task, in simple terms, it is how the application behaves during normal operation.

Given that the objective of the attacker is to hide the true intention of the attack

within the normal behaviour of the vulnerable application, it is crucial to study the

impacts of the application characteristics and vulnerability attributes. Depending

upon the application, the normal behaviour model may be concise or extensive. Fur-

thermore, when anomaly detectors are deployed in practice, a detection threshold

should be identified to reduce false alarm rates. If the anomaly rate is below the

detection threshold, the trace is considered to be ‘normal.’ The discussion of normal

behaviour is fairly brief in the previous work on evading anomaly detectors [105] [99]

[96] [98] [32] [56] [34] because finding a vulnerability in a concise normal behaviour

model is more difficult than finding a vulnerability in an extensive normal behaviour

model.

This thesis contributes to the research field by providing methods for analysing

normal behaviour models. Such analysis can assist the identification of the elements

in the normal behaviour model which an attacker can exploit, such as the existence

of open-write-close sequences. Thus, the defenders can deploy additional security

measures proactively around these potentially unsafe elements to prevent them from

being exploited in an evasion attack.

Evaluation of the Attacks

The previous work on evading anomaly detectors [105] [99] [96] [98] [32] [56] [34]

focused on the design of exploits alone without analysing it as a whole. This thesis

argues that, from the perspective of an anomaly detector, there are two stages of

an attack: (1) the break-in (i.e. the preamble) and (2) the exploit. Previous work

reported exploits which can bypass detection completely (with a 0% anomaly rate)

without considering the system calls executed during the break-in stage. However,

system calls executed before the exploit (i.e. the break-in) also raise alarms, hence

the anomaly rate for an attack should be calculated over the system calls executed

during both the break-in and the execution of the exploit. Additionally, previous

work did not consider exploit size as a parameter in attack generation; hence attack

length was not deemed relevant.

11

The contribution of this thesis includes an attack evaluation strategy, which takes

the preambles into account. By establishing realistic metrics for the success or the

severity of attacks, this thesis aims to emphasize the potential trends which the at-

tackers may follow such as deploying longer exploits to reduce the effects of anomalous

preambles. By focusing on more realistic threats, researchers can develop methods to

detect the attacks before the attack is deployed.

Analysis of the Attacks

In this thesis, the attacks generated against anomaly detectors are tested not only

on the detectors which they target (as in previous work [105] [99] [96] [98] [32] [56]

[34]) but also on numerous other anomaly detectors employed in this research. Such

an analysis aims to reveal whether the generated attacks are detector specific or can

evade multiple detectors successfully. Needless to say, an evasion attack which can

evade multiple detectors poses a more serious risk than a detector specific evasion

attack. Furthermore, given that, in the main, the previous work assumed ‘white-

box’ access to the detector, this thesis provides a comparison between two scenarios,

namely both ‘black-box’ and ‘white-box’ access to the detector.

The evasion attacks generated with the proposed approach contribute by providing

a means for generating ‘attack datasets’, which can be employed in numerous ways

to improve computer system defenses. For example, given a set of evasion attacks

against a particular detector, the detector developer can analyse the evasion attacks

to identify detector weakness. Based upon the analysis results, the detector developer

can adjust the detection technique and retrain the detector to improve detection and

reduce false alarms. Consequently, the defenders can be more proactive and develop

detectors which are robust against the variants of an attack.

Multi-objective Optimization

This thesis employs Evolutionary Computation, which provides support for opti-

mizing multiple characteristics of an attack besides the anomaly rate, such as the

attack length and the dispersion of anomalies. Dispersion of anomalies is employed

in anomaly detectors (as a locality frame count) to delay the execution of a process

12

because clustered anomalies are more likely to be intrusions than scattered anomalies.

Future detector vulnerability testing efforts should investigate multiple characteris-

tics of an attack such as the anomaly rate of the break-in and the dispersion of the

anomalies throughout the attack.

Support for multi-objective optimization contributes by providing a means for

generating attacks which can improve various attack characteristics. This is especially

important where the vulnerability testing extends beyond minimizing the detection

rate and incorporates additional metrics such as exploit lengths and attack delays.

In such vulnerability testing scenarios the tester can examine how the incorporated

metrics affect the success of the evasion attacks and improve the detection techniques

accordingly.

1.3 Organization of the Thesis

The ‘black-box’ approach proposed in this thesis generates stack buffer overflow at-

tacks automatically. Therefore, stack buffer overflow attacks are introduced in Chap-

ter 2, with the emphasis on identifying the components of stack-based buffer overflow

attacks and the key characteristics which the attackers aim to enhance in order to

evade detection. Furthermore, Chapter 2 provides an overview of the characteristics

that the proposed approach aim to improve to evade detection.

Chapter 3 details the relevant work in two categories: the previous research on

detectors, Section 3.1, and the previous research on evading detectors, Section 3.2.

The research in detectors is categorized further in terms of detection methodologies,

namely, misuse detection in Section 3.1.1 and anomaly detection in Section 3.1.2.

Previous research on evading detectors is discussed in Section 3.2.

Chapter 4 discusses the detectors which are utilized in the experiments for this

thesis and includes both misuse and anomaly detectors. Snort was employed as the

misuse detector in this thesis, Section 4.1. Anomaly detectors employed in this thesis

monitor the sequences of system calls which an application makes to detect intrusions,

namely, Stide, pH, pH with a schema mask (pHsm), the Markov Model and Neural

Network detectors (Section 4.2).

13

Chapter 5 introduces the Evolutionary Computation concepts with a generic Evo-

lutionary Computation model in Section 5.1. Furthermore, it provides an overview of

the Evolutionary Computation algorithms, which are employed in the experiments,

(namely, Grammatical Evolution in Section 5.2 and Linear Genetic Programming

in Sections 5.3 and 5.4), without focusing on a particular problem. The algorithm

discussions provide an overview of the representation, training schemes, stochastic

search operators and fitness calculation, while the problem-specific details are left to

Chapters 6, 7 and 8.

Based upon the buffer overflow characteristics provided in Section 2.3, Chapter 6

focuses on improving the buffer overflow characteristics, namely, NoOP and return

address components, using Grammatical Evolution (GE). Furthermore Chapter 6

provides the definition of the GE grammar, fitness evaluations of the malicious buffers

and a discussion of search space size for the given problem.

Chapter 7 expands the proposed framework by focusing on improving the shell-

code of the buffer overflow attack. The improvements are made at the assembly level

by inserting obfuscation code and discovering alternate ways for achieving the attack

goals of evading misuse detectors . For this purpose, a Linear Genetic Programming

(GP) approach is employed for evolving the buffer overflow attack payload. Further-

more, Chapter 7 addresses the identification of an appropriate instruction set, fitness

calculations and provides a discussion of the search space size.

Even though the evasion attacks generated in Chapters 6 and 7 evade the misuse

detectors, an anomaly detector monitoring application behaviour can detect the at-

tack by observing the deviation in application behaviour during the attack. Chapter

8 continues on improving the shellcode of the buffer overflow attack but the improve-

ments are made at the system call level. Thus, the objective is to craft a shellcode

which executes a sequence of system calls which conforms to the normal database of

the detector while achieving the attack goals. These attacks are also called mimicry

attacks since the attack mimics the legitimate use of the application, as defined by

the normal behaviour model. In particular, Linear Genetic Programming with Pareto

Ranking is employed to evolve sequences of system calls which (1) contain the mali-

cious sequence and (2) minimize the anomaly rate and improve other characteristics.

14

In addition to the instruction set details, discussion of fitness calculations, detector

training set analysis and search space analysis, Chapter 8 also demonstrates that there

are two parts to a buffer overflow attack and the anomaly rates should be calculated

for the attack as a whole.

Chapter 9 investigates the anomaly rate of the mimicry attacks when they are

trained against a specific detector and deployed against other detectors. The purpose

of such an investigation in Section 9.1 is to determine whether the mimicry attacks

generated against one detector can generalize to other detectors sharing similar detec-

tion techniques. Furthermore, Section 9.2 provides in-depth analysis of the mimicry

attacks generated by not only the proposed methodology in Chapter 8 but also the

‘white-box’ methodologies discussed in relevant mimicry attack work. In Section 9.3,

the mimicry attacks generated with the ‘black-box’ approach proposed in this thesis

are compared against the mimicry attacks generated by a representative ‘white-box’

approach with the purpose of identifying similarities and differences in the resulting

attacks.

Chapter 10 analyses the mimicry attacks generated by the proposed ‘black-box’

approach from the perspective of vulnerable application characteristics. In Section

10.1, the vulnerable applications and the normal databases generated by the anomaly

detectors are examined to identify the impact of ‘normal behaviour’ on the generated

mimicry attacks. Moreover, in Section 10.2, mimicry attacks generated by the pro-

posed ‘black-box’ approach are examined to discern system calls which the attacks

employ to hide the malicious intent, which – as Chapter 10 establishes – depends

upon the vulnerable application.

Finally, conclusions are drawn and future research directions are discussed in

Chapter 11.

Chapter 2

Stack Overflows

This thesis focuses on stack overflows, mainly because (1) stack overflow attacks are

fairly established in the evasion attack research and (2) the ground truth of these

vulnerabilities are available in detail in the current literature [2] [3] [4] [5]. It is worth

emphasizing that the proposed approach relates to a wider scope of attacks, where

the objective of the attacker is to improve the code which he/she injects to evade

detection.

2.1 Definition

In programming languages such as C, data integrity checks are minimal for perfor-

mance reasons. Although this increases efficiency and provides more control to the

programmer, it also means that the programmer is responsible for making sure that

the memory allocated for a variable is sufficient. If the data copied into a variable

is more than the variable can hold, the excess data spills into the unallocated mem-

ory space or into other allocated variables. If a critical variable is overwritten, the

program will crash or behave unexpectedly. The techniques for exploiting a buffer

overflow vulnerability depends upon the operating system, system architecture and

where the vulnerable variable resides in the memory such as the stack or the heap.

This thesis focuses on stack buffer overflows in Intel 32 bit architectures running

standard Linux operating systems.

The stack is a first-in-last-out data structure which the programs use to store

function variables and relevant information on the caller of the function. A stack

frame contains all the variables that the function allocates. Furthermore, the program

stores the information on what to do next after the function returns. Specifically, this

information is the value of the EIP (extended instruction pointer) register before the

function runs, which points to the next instruction in the program. This information

15

16

is also called the return address, since it determines the execution path after the

function returns. When the function returns, the variables which are stored on the

stack are de-allocated and the program uses the EIP value stored in the stack to

determine the next instruction.

The reason that stack overflows are hazardous is that the stack grows toward the

lower memory addresses (e.g. the first variable at address 0xAA55 and the second

variable at address 0xAA44) whereas the memory copy operation works toward the

higher addresses (e.g. if the first byte is copied to address 0xAA44 the second byte

is copied to address 0xAA45). This implies that an unchecked memory copy can

overwrite what is already stored on the stack. If the overflow resulting from an

unchecked memory copy overwrites the return address on the stack, the execution

can be diverted to an arbitrary code.

2.2 Components of Stack-based Buffer Overflow Attacks

In order to deploy a stack-based buffer overflow attack, the attacker needs to: (1)

inject the shellcode into the vulnerable variable and (2) overwrite the EIP value

stored on the stack with the address of the shellcode in memory. These tasks are not

straightforward since the memory addresses of variables are determined at runtime.

Furthermore, dynamic variables make it difficult for an attacker to determine the

location of the return address with respect to the vulnerable variable. In order to

improve the chances of success, the attacker adds the return address and NoOP (No

OPeration) sled components to the shellcode. Although, different forms of stack-based

buffer overflows exist [101], Figure 2.1 shows the common buffer overflow exploit where

the NoOP sled precedes the shellcode and the back-to-back return address component

follows it. Sections 2.2.1, 2.2.2 and 2.2.3 details the shellcode, return address and

NoOP sled components respectively.

2.2.1 Shellcode

A shellcode is a short assembly program which aims to execute on the attacker’s

behalf. The shellcode name is derived from the original objective of the shellcode,

which is to spawn a UNIX shell. Although spawning a UNIX shell is still the most

17

0x90 0x90 0x90 0x90

0x90 0x90 0x90 0x90

MOV 0x05, AL
…… 16 bytes of code ……

INT 0x80

MOV 0x04, AL
…… 16 bytes of code ……

INT 0x80

MOV 0x06, AL
…… 16 bytes of code ……

INT 0x80

0xBFFFDE55
0xBFFFDE55
0xBFFFDE55

0xBFFFDE50

0xBFFFDE54

0xBFFFDE58

0xBFFFDE68

0xBFFFDE7C

0xBFFFDE8C

0xBFFFDE8E

0xBFFFDE9E

0xBFFFDEA2

0xBFFFDEA6

0xBFFFDEAA

Memory
Address

Content

NOP Sled

Shellcode that

executes open()

Shellcode that
executes write()

Shellcode that
executes close()

Approximated
return address

block

Figure 2.1: Common buffer overflow exploit

18

common form of shellcodes, attackers use shellcodes to perform various tasks such as

modifying critical system files or opening and binding shells to sockets [54] [31].

There are numerous characteristics which differentiate a shellcode from a regular

program. First, the regular program allocates memory for variables (in fact, variables

are stored in data segments and the program resides in code segments) whereas a

shellcode generally works only within its memory space. That is to say, if a variable

is required for the shellcode, it is usually explicitly allocated within the shellcode.

Second, programs do not usually have size constraints whereas a shellcode needs

to be concise since it must fit within the vulnerable buffer. Third, although both

programs and shellcodes are stored as hexadecimal numbers, the shellcode cannot

contain a null byte (0x00) since memory copy functions such as strcpy will only

copy until the null byte is reached thus failing to copy the entire shellcode.

The objective of the shellcode is to force the vulnerable program to behave in a

way which achieves the objective of the attacker. One way to achieve this is to force

the vulnerable program to make system calls. A system call is a mechanism which

programs use to request a service from the operating system such as input output

functionality, running and exiting processes. In protected mode, the operating system

kernel runs in a privileged mode, which allows the kernel to access system resources

such as disks, networks and hardware. User programs use system calls to request

access to these system resources. In theory, separating the kernel mode from the

applications prevents applications from modifying the kernel space.

Two methods are presented for calling system calls [54]: the first is to use a C

library wrapper or libc [25] and the second is to call the system call with an assembly

function (or a shellcode) which copies the system call arguments to corresponding

registers [54]. In order to call a system call with a shellcode, the following tasks need

to be performed.

1. A system call number should be stored in the EAX register. The list of system

calls and their corresponding numbers are operating system dependent and

are usually included in the operating system code and/or documentation. For

example, Red Hat 9.0 Linux defines the system call numbers in:

/usr/include/asm/unistd.h.

19

2. The arguments to the system call should be stored in the remaining registers.

(first argument in EBX, second in ECX, third in EDX etc.). If there are more

than three arguments or if the argument is too large to fit in the register (in

the case of a C/C++ data structure), the registers contain the pointers to the

system call arguments.

3. Interrupt 0x80 should be executed.

After the interrupt is executed, the CPU switches to kernel mode and the system

call is executed based upon the parameters supplied in the registers. Therefore the

general objective of the shellcode is to set the register values and call the interrupt to

execute the system calls. Some of the system calls commonly used by attackers are

execve, which executes a program the location of which is passed as a parameter;

open, write and close, which access and modify the file which the user requests.

The shellcode can call one or more system calls depending upon the objective of the

attacker and the obfuscation method used.

2.2.2 Return Addresses

In order to direct the execution to the shellcode, the approximate location of the

vulnerable buffer which stores the shellcode must be known. Attackers approximate

the location of the vulnerable buffer by subtracting a suitable offset from the stack

pointer (ESP) [25]. The stack pointer can be obtained by analysing the application

with a debugger such as the GNU Project Debugger (GDB) [106]. Subtracting an

offset from the stack pointer effectively moves the return address value toward the

variables stored in the stack. Naturally, a larger offset is subtracted if the vulner-

able buffer is farther from the stack pointer. Once an approximation is made, the

attacker creates a block of back-to-back approximated return addresses and appends

it to the end of the shellcode. As long as (i) one of the return addresses overwrites the

actual return address stored on the stack (Figures 2.1 and 2.2) and (ii) the approxi-

mated back-to-back return address is accurate enough to jump to the NoOP sled, the

execution will be directed to the shellcode.

One issue related to the return addresses is alignment. Even though the return

address is approximated accurately enough to jump to the first instruction of the

20

shellcode, if the stored return address on the stack is not overwritten with a properly

aligned return address, the misaligned return address will direct to the wrong memory

location causing it to crash or behave unexpectedly. For example, if approximated

address 0x1234 is misaligned by 1 byte, the value which overwrites the actual return

address can be 0x3412.

Furthermore, in Complex Instruction Set Computer (CISC) architectures such as

Intel x86, the length of the instruction is not fixed. Therefore if the return address

jumps to anywhere other than the first byte of the instruction, the instruction mis-

alignment can cause the shellcode to crash, even though the shellcode is valid. This

increases the importance of the NoOP sled since the length of the NoOP instruction

is 1 byte and therefore it does not create misalignment problems.

2.2.3 The NoOP sled

Estimating the address of the first instruction in the shellcode is crucial since jumping

elsewhere in the shellcode will have an undetermined outcome. In order to eliminate

the need for estimating the exact location of the vulnerable buffer, the beginning

of the shellcode is padded with a special purpose single byte instruction called ‘no

operation’ or NoOP, which is used to waste computational cycles (generally, for the

purpose of timing). Sequences of NoOP instructions are referred to as the NoOP sled.

As long as the desired return address is accurate enough to direct execution to the

NoOP sled, the EIP will be incremented after the execution of each NoOP sled until

the execution reaches the shellcode.

A longer NoOP sled increases the chance of the shellcode deploying successfully

since more than one return address value will allow the shellcode to execute. How-

ever, the NoOP sled usually manifests itself as a long sequence of 0x90 bytes, hence

presenting a very obvious detection signature. Therefore, from the attacker’s point of

view, shorter NoOP sleds are desirable, which implies that the original stack pointer

offset (indirectly, the location of the shellcode) must be estimated more accurately.

Figure 2.2 shows a simple program which is susceptible to stack buffer overflow

attacks. The size of ‘char’ is assumed to be 1 byte and the size of ‘long’ is assumed

to be 4 bytes. The function argument X is copied onto B without any data integrity

21

Figure 2.2: Example of a stack buffer overflow

checks. The stack layout shows the variables on the stack after the program is ex-

ecuted and the buffer overflow which overwrites the EIP value stored on the stack

with the return address value supplied by the attacker.

If the overwritten return address points to anywhere in the NoOP sled or the

first instruction of the shellcode, the attack is deployed successfully provided that the

shellcode is injected properly.

2.3 Discussion

In order to evade detection, the attacker needs to enhance numerous characteristics

of stack buffer overflow attacks.

1. Length of the NoOP sled and the accuracy of the return address: In

order to be able to direct the execution to the shellcode, the attacker needs to

approximate the address of the vulnerable variable on the stack and create a

malicious buffer which will be injected into the vulnerable application. Since

the return address is an approximation, the attacker needs to add a sequence of

NoOP instructions, which works like a ‘safety zone’ which improves the chances

of the attack. As long as the approximate address directs the execution to

the NoOP sled, the attack can deploy successfully. As the approximation of the

return address gets more accurate, the attacker can employ shorter NoOP sleds,

which in turn enables the attack to bypass the signature detectors. To address

this problem, this thesis employs Grammatical Evolution to identify suitable

22

NoOP and return address components. The proposed methodology and results

are discussed in Chapter 6.

2. Shellcode design at the assembly level: Another aspect of the attack is

the design of a shellcode at the assembly level. Although the attacker can use

readily available shellcodes [75], misuse detectors contain signatures which can

detect the existence of certain assembly instructions (such as NoOP, which is

equal to hexadecimal 0x90) and parameters (such as /bin/sh, which is equal

to hexadecimal 0x2f62696e2f7368). To design shellcode at the assembly level,

this thesis employs Genetic Programming, where the code bloat phenomenon

creates a possibility of (i) creating equivalent NoOPs or (ii) distributing NoOPs

across the shellcode thus masking the original intent of the shellcode. Further-

more, given a suitable instruction set and a fitness function which describes the

core objectives of an attack, Genetic Programming can find alternate ways to

achieve the attacker’s objectives while bypassing the signatures. The proposed

methodology and results are discussed in Chapter 7.

3. Shellcode design at the system call level: By optimizing the NoOP sled

length and return address accuracy, the attacker can avoid using highly de-

tectable NoOP sleds. By mixing the NoOP instructions with the shellcode

and finding alternative instructions to carry out the attack, the attacker can

also bypass the signatures which monitor detectable shellcode characteristics.

However, even though the attacker deploys the attack without getting detected

by misuse detectors, an anomaly detector running on the target host which

monitors the application behaviour can detect the attack by identifying de-

viations from normal behaviour. Therefore, the attacker needs to design a

shellcode which executes a sequence of system calls which does not produce

a detectable deviation from normal behaviour, while achieving the attacker’s

goals. The above-mentioned evasion attacks, which remain undetected while

being deployed successfully, are also called mimicry attacks. The proposed

mimicry attack generation methodology and results are detailed in Chapter 8.

Chapter 3

Background on Detectors and Attacks

The proposed approach can be considered as a first step towards creating and arti-

ficial arms race between the detectors and the attackers with the ultimate objective

of improving the state-of-art in intrusion detection. Within this view, this chapter

focuses on the relevant work on intrusion detectors and the evasion techniques devel-

oped against the detectors. Therefore, the relevant work discussed in this chapter is

divided into two categories: research on detectors and research on evasion method-

ologies, specifically mimicry attacks research.

3.1 Previous Work on Detectors

Different detection mechanisms can be employed to search for evidence of intrusions.

Two major categories exist for detection mechanisms: misuse and anomaly detection.

Misuse detection systems, which are discussed in Section 3.1.1, use a priori knowledge

for detection. In other words, they detect intrusions by knowing what the misuse is

or what it causes. On the other hand, the anomaly detectors in Section 3.1.2 adopt

the opposite approach, which is to employ the knowledge of normal behaviour, and

then find deviations from it. These deviations are considered as anomalies or possible

intrusions.

3.1.1 Misuse Detectors

Although anomaly detectors have been the focus of recent detector research, misuse

detectors are the basis for most tools used in practice. In general, such tools are based

upon the efforts on pattern matching detectors [87] and static prevention mechanisms

[15] [108].

Pattern matching (i.e. misuse detection) [87] was the initial method used to detect

buffer overflow attacks. In this approach, the defining characteristics of attacks (such

23

24

as a sequence of NoOP instructions, or crucial segments in a shellcode) are employed

to create attack signatures. The advantage of pattern matching is that it is easy

to deploy. On the other hand, even slight changes in attacks allow attackers to

camouflage their actions easily [48]. Snort, which is discussed in detail in Section 4.1,

is one of the more well-known open source misuse detectors which include shellcode

signatures.

On the other hand, static prevention techniques such as Stack Guard [15] and

Stack Shield [108] focus on the way attackers crash the stack to gain control. Although

alternative methods exist, the most generic type of stack overflow has to overwrite

the return address stored in the stack to take control of the execution. Therefore

these methods look for abnormal changes in return addresses stored in the stack.

Stack Guard inserts ‘canary’ variables close to the return addresses stored on stack.

Since the common attack technique is to write back to back desired return addresses

hoping that one will overwrite the return address, it becomes difficult to overwrite the

return address without overwriting the ‘canary’ word. Before the function returns,

the ‘canary’ word is checked. If it is altered, the program exits gracefully without

executing the attacker’s code. Furthermore Stack Shield inserts control variables

before and after the text segment, which holds the executable code in memory. The

main idea is that a return should always divert the execution to a point within the code

and any diversions outside the code causes the program to exit gracefully. In terms of

recent protection mechanisms, Hiroaki Etoh implemented a stack overflow protection

mechanism [93] into GNU C Compiler (GCC) version 3. The stack smashing protector

in GCC allows the vulnerable program to exit safely by preventing the attacker from

overwriting the return address. Moreover, address space randomization efforts [90]

aim to make it difficult for the attacker to approximate the return address values.

Although the proposed static prevention methods are easy to deploy and provide

effective protection against certain types of buffer overflow attacks, they are computa-

tionally demanding (i.e. they introduce a computational overhead between 69% and

16600% [15]) and methods have been published on how to bypass both Stack Guard

and Stack Shield [10]. The main method behind bypassing Stack Guard and Stack

Shield is to discover the ‘canary’ variables and deploy the exploits without modifying

25

them [10]. To overcome these challenges, Dalton et al. [17] proposed a hardware

assisted method recently which involves dynamic information flow tracking. In such

a scheme, the untrusted data is tagged and tracked while it propagates through the

system. If the untrusted data is handled in an unsafe manner, the detector throws a

security exception.

3.1.2 Anomaly Detectors

Anomaly detection systems attempt to build models of normal user behaviour and use

this as the basis for detecting suspicious activities. This way, known and unknown (i.e.

new) attacks can be detected as long as the attack behaviour deviates sufficiently from

normal behaviour. When a buffer overflow attack is deployed, a vulnerable privileged

program is exploited to do something which it is not supposed to do. This implies

that it is possible to observe a change in program behaviour. Anomaly detectors are

based upon this assumption. Unfortunately, should the attack be sufficiently similar

to the normal behaviour, it may not be detected.

In terms of host-based anomaly detection, Forrest et al. [30] employed a methodol-

ogy motivated by immune systems. This characterizes the problem as distinguishing

self from non-self (normal and abnormal behaviours respectively). An event horizon

is built from a sliding window applied to the sequence of system calls made by an ap-

plication during normal use. The sequences formed by the sliding window are stored

in a table which establishes the normal behaviour model. During the deployment (de-

tection) phase, if the pattern from the sliding window is not in the normal behaviour

database, it is considered a mismatch. Forest et al. [30] used the sendmail service,

which is a part of the University of New Mexico Computer Immune Systems Data

Sets [109], in their experiments because it has sufficiently varied normal behaviour

and there were many documented attacks against sendmail. In order to create normal

behaviour, the authors used a suite of artificially-created messages which contains as

many variations on normal behaviour as possible. Variations in message length, en-

coding, content and senders/receivers were considered. Once the normal behaviour

was generated, normal behaviour database was developed on the sequences of system

calls which sendmail made while processing the messages. To do so, they used a

26

sliding window of sizes 5, 6 and 11 in order to maintain a record of both current and

past system calls. After the database was created, a sliding a window of the same

length was employed on the new trace. The percentage and numbers of mismatches

were calculated, where a mismatch was defined as the system call sequence which

does not appear on the normal database. The authors used mismatch metrics to

formulate the degree of anomaly on a given trace. The results [30] indicated that

the normal behaviour database distinguished both successful and attempted attacks

from the normal execution of the code. Their approach was implemented later as

a detector called Stide [109]. Stide is accompanied by the University of New Mex-

ico Computer Immune Systems Data Sets, which contains the system call traces for

UNIX applications such as sendmail, ftp, lpr, inetd and xlock. The traces provided in

the University of New Mexico Computer Immune Systems Data Sets are preprocessed

by mapping the system calls to discrete numbers and by eliminating the system call

parameters.

Relevant work which has extended Stide can be categorized further into two

groups, (1) research which includes more information from the system state such

as the program counter values and the stack state and (2) research which utilizes the

system call sequence information by focusing on representation, clustering of anoma-

lies and learning methodology.

Extending Stide with Employing Additional System State Information

In terms of research which extends Stide by employing more information from system

state, Sekar et al. [89] extended the work of Forrest et al. [30] by utilizing finite

state automata (FSA) to represent the normal behaviour database. Their objective

was to develop an efficient method which could (1) work in real time (given that

building a FSA is computationally expensive) and (2) capture both short and long

term correlations. The main contributions of their approach are listed below:

1. As opposed to fixed window length approaches [30], it does not have a limitation

on the length of system call sequences.

27

2. It can capture the behaviour of branching and looping structures by using pro-

gram counter information, which should reduce false positives (i.e. a better

defined model).

3. It learns the behaviour of the program and leaves out the behaviour of library

functions. For instance, if the program calls a shared libc function such as

printf, resulting system calls would provide no useful information about how

the main program works.

The authors used nfs, ftpd and httpd services in their experiments where the

proprietary system call data sets are generated by “using training scripts that attempt

to simulate the requests likely to be handled by each of these servers” [89]. For

ftpd and nfs, they developed training scripts where each script generates a random

sequence of valid commands as well as invalid ones which were introduced deliberately

whereas the system calls of the httpd service were collected from a live web server.

Although no further information was given, the authors claim that the distribution

of the commands was set to be similar to the distribution in the normal operation

of the services. In addition to the system call sequence information, two further

observations were made. The first observation is the program counter which stores

the memory address of the code, from which the system call was executed. The second

observation is the stack information which allows shared library code to be tracked

back to the main program. The results were expressed in terms of a convergence rate

(model length over the number of system calls in the model), a false positive rate

and computational complexity. The results indicate that compared with the sliding

window approaches [30], FSA converges quickly and provides a better false positive

rate. It has been found effective in detecting a wide range of attacks including stack

buffer overflows. In particular, stack buffer overflows are detected because stack

information is used to track back from the shared library to the main program. If the

back track fails, it means the stack is corrupt and therefore it is likely that a buffer

overflow attack has occurred.

Feng et al. [27] [26] substituted the FSA [89] for a virtual path table which not

only keeps track of where the system call is executed from, but also employs the

point where the execution is returned. The authors assumed that all the functions

28

which the program calls are statically linked, hence the return addresses observed on

the stack are consistent over different runs of the same program and therefore the

approach may not be applicable to a common case where shared libraries are linked

dynamically. An execution path is generated between the two execution points in the

program by comparing the list of return addresses on the stack. In summary, a virtual

path contains the list of functions which the program needs to execute or return from

in order to get from one execution point to another. The authors employed httpd

and ftpd services in their experiments. The proprietary httpd system call data was

generated by using a web benchmarking suite. The proprietary ftpd system call data

was generated by their automated scripts which mimic common user activities such

as downloading and uploading. After training is conducted on the proprietary data

sets, anomaly detection occurs as follows.

Given the input trace:

1. If the stack history is corrupt (inconsistent return addresses), it is a stack

anomaly.

2. If there is an unexpected system call, it is a system call anomaly.

3. If the given trace does not match any known virtual paths, it is tagged as a

virtual path anomaly. In other words, the program never used that execution

path before.

4. If a new return address is observed, it is a return address anomaly.

Item 1 can be detected by the previous work by Sekar et al. [89] and Item 2 can

be detected by the previous work by Forrest et al. [30] and Sekar et al. [89]. The

last two employs the return address information – the main contribution of the work

by Feng et al. [27]. In their more recent work, Feng et al. employed static analysis

to extract an automaton with call stack information [26]. They discussed that the

models based on push down automata are inefficient due to non deterministic stack

activity. The stack of the process is analysed to extract the return addresses, which

in turn reveals the context information and enables a deterministic model.

Similar to Feng et al. [27] [26], Wagner et al. [103] employed an analysis of the

source code to improve the detection rate. As opposed to the work of Feng et al. [27]

29

[26], which employed program counter information to determine where the system

calls are executed, Wagner et al. [103] employed the analysis of the source code.

Their main assumption was that it is possible to infer where the system calls occur

at the source code. First, an expected program behaviour model is computed from

the application source code, and then in runtime, system calls were checked against

the model to detect any violations. The authors [103] used a callgraph model by

building a control flow graph. Each node in the graph is a point in the source code.

Transitions from the node occur when (1) a system call is made, (2) a function is

called or (3) a function returns. Such a graph is generated by a context-free grammar

with non-terminals as nodes and terminals as system calls. In the detection phase, if

the observed system call sequence cannot be achieved by transitioning from one node

to another in the graph, it is flagged as an anomaly. The main contribution of their

work is the incorporation of source code analysis to intrusion detection, as opposed

to employing runtime debugging information to infer program behaviour. This also

means that as opposed to runtime observations, which may not necessarily cover all

possible program branches (loops and if statements), the graph covers all possible

branches. Moreover, mimicry attacks are discussed briefly in their paper, where the

authors suggest monitoring system call arguments for more precise detection [103].

Although the authors provide an in depth discussion of the implementation issues

of the detector, very little information on the data sets was provided other than the

name of the applications (i.e. finger, qpopper, procmail, sendmail).

Mutz et al. [72] proposed a host-based anomaly detection system where multiple

detection models are applied to system call arguments and an overall aggregate score

of these models is introduced to determine if an event is an attack or not. They

employed a Bayesian modelling approach to combine multiple anomaly scores from

system call arguments. Furthermore, they compared their approach with sequence-

based methods such as Stide, bag of system calls and clustering algorithms. In their

experiments, the authors employed the Solaris Basic Security Mode (BSM) Audit logs

of UNIX applications (i.e. eject, fdformat, ps, ftpd, sendmail, telnetd) from the 1999

MIT Lincoln Laboratories Intrusion Detection Data sets [63].

30

Similar to the work of Mutz et al. [72], Sufatrio et al. [94] provide an extension

to the detectors which employs system call sequence information by extending the

detector to monitor additional system call attributes such as system call arguments

and process privileges. The process privilege information indicates whether the system

call is executed with super-user privileges. Thus, if a system call is executed with

user privileges during normal operation but gets executed with super-user privileges

during deployment, it is identified as an anomaly. In order to evaluate system call

arguments, the authors proposed a categorization scheme where each category acts

as an abstraction of arguments and specifies the security impact of the parameter

on the system state. Such a categorization scheme is user supplied and therefore

the effectiveness of the detection relies on the proper specification of the parameters.

Sufatrio et al. [94] employed Stide [30] as well as their implementation which extends

Stide against traceroute and ftpd applications and the JOE text editor. Their results

indicated that incorporating process privileges and system call argument information

improves the resistance of the detectors to mimicry attacks without increasing the

false alarm rate.

In terms of detection techniques which employ system call parameters, Li et al.

[62] proposed an approach to incorporate system call parameters into the detection

process. To this end, they proposed a three stage approach. The first step involves

discovering the system call sequences using the Teiresias algorithm [86]. Using associ-

ation rule mining, the second stage generates rules which govern the system calls and

system call arguments which perform repetitive tasks whereas the third stage aims

to discover rules which govern the system calls from different patterns. The authors

employed their approach on a web server which hosts the web pages downloaded from

a university department web site. Li et al. [62] provided results in terms of the speed

of convergence, false alarm rates and latency. However, since they did not test their

approach against an actual attack, no detection results were provided.

Tan established that the length of the sliding window plays an important role

in detector performance [97]. Specifically, for Stide to detect the attack, the sliding

window length should be longer than the minimum foreign sequence. The minimum

foreign sequence was defined as a sequence in which all of its subsequences exist in

31

the normal database. Tan et al. [97] argued that, by developing an attack variant

which increases the minimum foreign sequence length, the attacker can avoid detec-

tion. Similarly, Wespi et al. [110] proposed a method to discover variable length

sequences from the training data. Variable length patterns are deemed more suitable

for anomaly detection because their observations on sequences of events created by a

process revealed that there are long, process-specific patterns. Sliding window lengths

in fixed length approaches are much shorter so they cannot capture behaviour defined

by long sequences.

In order to discover the variable length sequences, Wespi et al. used the Teiresias

algorithm [86], which was developed originally to discover “rigid patterns in unaligned

biological sequences” [110]. The main objective is to build a table of maximal pat-

terns, which is the longest sequence which covers a large portion of the training set.

The table should contain only those patterns necessary to cover the training set,

hence reducing the number of patterns. No training occurs in this approach. The

authors employed the ftpd application in their experiments in which the proprietary

system call data was generated by utilizing an operating system test suite which

automatically exercised ftp commands.

Results showed that compared with sliding window approaches [30], the variable

length approach [110] needs to store fewer patterns to cover the training set. Fur-

thermore, variable length patterns provided better coverage for the test data (which

contains the normal behaviour), which in turn reduces false alarms. The tests on at-

tacks are not very detailed but the authors [110] conclude that the separation between

normal behaviour and anomalies is more reliable than with fixed length approaches.

Extending Stide without Employing Additional System State Information

In terms of the relevant work which extends Stide while utilizing only system calls,

Somayaji [91] developed a methodology similar to Stide and implemented it as a

Linux kernel extension. The resulting detector is called Process Homeostasis (pH)

and discussed further in Section 4.2.2. Somayaji employed look-ahead pairs since it is

more efficient and faster to converge. Furthermore, Somayaji introduced tolerization

and sensitization concepts to the detector. Based upon the assumption that malicious

32

behaviour will produce anomalies clustered together, tolerization allows the detector

to reduce false positive rates by neglecting scattered anomalies, which are likely to

be slight changes in normal behaviour. The detector is retrained as the false positive

rate increases. Sensitization prevents attacks from leaking into the normal database.

If the locality frame count for a process exceeds the limit, the process is sensitized

by resetting the look-ahead pairs for the process. Another important feature of pH

is that it responds to attacks by slowing down the process. Delay is an exponential

function of locality the frame count which aims to identify clusters of anomalies.

The author employed pH on his workstation as well as on another three hosts

(namely, a personal workstation, the University of New Mexico mail and web server

and the University School of Nashville web server), which were used on a daily basis.

The main purpose was to observe pH while building normal behaviour models and

employing the resulting models while monitoring normal behaviour. Furthermore,

in order to observe the detection of intrusions, the author employed pH on a host

with a vulnerable fetchmail program and executed an exploit against the vulnerable

program. This thesis employs Process Homeostasis, therefore it is discussed further

in Section 4.2.2.

More recently, Inoue and Somayaji compared the look-ahead pairs method against

the full sequence method [38]. Furthermore, they extended pH by using random

schema masks. The main idea behind schema masks is to maintain a longer sliding

window while ignoring some of the calls within the window. That is to say, the

schema mask determines which locations within the sliding window are ignored while

producing the output from the sliding window. They determined that utilizing longer

sliding window lengths improves detection, therefore they maintain a longer sliding

window size and take taps from locations determined at the detector configuration.

The schema mask method has two advantages. First, the detector monitors a longer

time window without increasing computational complexity. Second, if the attacker

does not know the schema mask, he/she would have to develop mimicry attacks based

upon window sizes. The authors employed lpr-mit, named, sendmail and xlock traces

from the University of New Mexico Computer Immune Systems Data Sets [109]. This

thesis employs Process Homeostasis with schema masks so it is discussed further in

33

Section 4.2.3. Finally, for a brief review of the research on system call monitoring,

the reader is encouraged to read the literature review paper by Forrest et al. [29].

Machine Learning Approaches to Anomaly Detection

Several researchers have applied machine learning to host-based anomaly detection.

According to the learning method employed learning algorithms are typically super-

vised or unsupervised. In supervised learning, the learning algorithm utilizes a set

of classified (or labelled) instances and is expected to identify a way of predicting

new unclassified instances [112]. Using a bag of words representation for system call

traces, Kang et al. [43] employed supervised learning algorithms such as Naive Bayes,

decision trees, RIPPER and SVM on system call data which contains both attack and

normal behaviour traces. The authors employed the fourth week data from the 1999

MIT Lincoln Laboratories Intrusion Detection Data set [63] and lpr and sendmail

data from the University of New Mexico Computer Immune Systems Data Sets [109].

On the other hand, unsupervised learning involves searching for associations be-

tween features without making use of classes or labels. The Markov Model [84] [65] is

a particularly suitable machine learning method which can model temporal relations

in the input data explicitly [114]. Moreover, such a model has been utilized within

the context of intrusion detection systems [98] [114] [33] [83], as a related case of a

Finite State Automata representation [89]. Typically, the relevant work on Markov

Models employed a sliding window on the sequences of system calls. Yeung et al.

[114] and Qian et al. [83] employed left-to-right and fully connected Hidden Markov

Models whereas Gao et al. [33] and Tan et al. [98] employed only fully connected

Hidden Markov Models. Although there are some variances in representation and the

preprocessing of system calls, the common objective is to build a ‘normal behaviour’

model for a process. Given new behaviour, hypothesis testing is employed to deter-

mine whether the new behaviour is anomalous or not. The Markov Model detector

which is employed in this thesis is similar to the relevant work and is discussed further

in Section 4.2.4. Yeung et al. [114] employed ps, login, named and sendmail system

call traces from the University of New Mexico Computer Immune Systems Data Sets

[109]. Qian et al. [83] employed the sendmail system call traces from the University

34

of New Mexico Computer Immune Systems Data Sets [109]. Gao et al. [33] employed

the httpd service and utilized a web benchmarking tool to generate the proprietary

system call data set. By contrast, Tan et al. [98] employed the sendmail, lpr and ftpd

system call traces from the University of New Mexico Computer Immune Systems

Data Sets [109].

In terms of neural network approaches, Han et al. [36] employed evolutionary neu-

ral networks in anomaly detection. According to Han et al. [36], evolutionary neural

networks have the advantage of shorter training times compared to the conventional

neural network approaches and it can learn the structure and weights of the network

simultaneously. The authors employed the Solaris Basic Security Mode (BSM) Audit

logs of UNIX applications (i.e. eject, fdformat, ps, ftpd, sendmail, telnetd) from the

1999 MIT Lincoln Laboratories Intrusion Detection Data sets [63]. In the input layer,

they had 10 input nodes, hence setting their system call window length to 10. In the

output layer, they had 2 nodes, where the nodes represented attack and normal be-

haviour. The authors stated that they focused on detection of user-to-root attacks

[36] but did not provide detailed information on the training data or the applications

that they focused on.

On the other hand, even though a bottleneck feedforward back propagation neural

network is employed in one-class document classification by Manevitz et al. [64], it

is suitable for the one-class learning scheme where the training takes place only on

system calls consisting of normal behaviour. In a bottleneck neural network, given

an n dimensional input space, a two layer network is built where the second layer has

the same number of outputs as inputs. The number of neurons in first layer is m,

where m << n. By utilizing fewer neurons on the hidden layer, authors state that it

is possible to avoid the saturation problem which is the result of learning from only

positive examples. The network is trained to produce outputs identical to the input

space, hence error is expressed in terms of Euclidean distance or mean square error.

In terms of the one-class classification problem, Manevitz et al. [64] state that when

a new pattern is presented, a neural network produces the corresponding outputs. If

the presented pattern is similar to the training samples, the difference between the

outputs and the inputs will be similar. Furthermore, Manevitz et al. [64] investigated

35

threshold determination for one-class classification efforts. Although they employed

their methodology on different classes of documents provided in the Reuters database

[61], it can be adopted easily to work as an anomaly detector. Thus, this thesis

employs a similar detection methodology in the experiments, therefore bottleneck

neural networks are discussed further in Section 4.2.5.

3.2 Previous Work on Mimicry Attacks

The ‘mimicry’ concept [111] has its origins in biology where an organism bears a

superficial resemblance to another organism. In general, mimicry is advantageous to

the mimic. Numerous types of mimicry exist in biology depending on the organisms

involved and the interaction between the organisms.

The mimicry attack which is of interest to this thesis is similar to ‘aggressive

mimicry’ in which “the mimic adopts certain of the recognition marks of its model in

order to secure advantage over the model itself or over a third species that interacts

with the model” [111]. In such a scheme, the mimic may be a predator trying to gain

an advantage over the prey, or it can be the prey camouflaging its characteristics to

avoid predation. Within the context of computer security, a mimicry attack can de

defined as an attack which is modified in order to avoid detection by the detector

(misuse or anomaly).

Wagner et al. [105] introduced the ‘mimicry attack’ concept in which original

attacks were modified to evade detection. Wagner et al. [105] draw an analogy to

biological mimicry where a successful mimic will be recognized as ‘self’ by the immune

system (i.e. recognized as ‘legitimate’ by the detector) and will not produce alarms

while performing the malicious task.

In this thesis, a mimicry attack is considered to have two components: (i) the

preamble, which consists of the actions which the attacker must perform to take

control of the vulnerable application and (ii) the exploit, which is the code that

the attacker injects to achieve the malicious goals. By contrast, the previous research

discussed in this section considers a mimicry attack to contain only the exploit section

by assuming that the attacker can take control of the application without creating

anomalous behaviour. Therefore, the term ‘(mimicry) exploit’ which is used in this

36

section (and the rest of this thesis) refers to the term ‘(mimicry) attack’ in the previous

work [105] [96] [99] [32] [56] [34] [77].

In the paper which introduced the mimicry attack concept, Wagner et al. [105]

proposed three methods to avoid detection: (i) modifying system call parameters; (ii)

inserting system calls which are irrelevant to the attack being deployed while mini-

mizing the anomaly rate; and finally (iii) generating equivalent exploits by replacing

the system calls which can be identified easily by the detector. An example of the

last method is substituting an exploit which spawns a UNIX shell with an exploit

which creates a super-user account where the outcome results in the attacker gain-

ing super-user privileges. Given the assumption that the system calls in the normal

behaviour database is rich enough for an attacker to deploy the exploit, the objec-

tive is to determine whether an equivalent exploit exists in the normal behaviour

database. To do so two sets of languages are defined: Allowed system calls A and

malicious system calls M . Based upon language theory, they determine whether the

intersection of A and M is empty or not. If it is not empty, that means an equivalent

exploit can be constructed against the detector, which was pH. Wagner et al. em-

ployed pH with a sliding window size of 6, so the results were applicable to Stide as

well. Mimicry exploits were generated for the wuftpd service against pH by modify-

ing the detectable system call sequences manually. Normal behaviour was generated

by “running wuftpd on hundreds of large file downloads over a period of two days”

[105]. Although Wagner et al. were aware of the attack preamble, they assumed that

the attacker could take control of the application without being detected [105]. This

implies that the break-in does not generate anomalous behaviour which the anomaly

detector can detect. By taking preambles into account and investigating the impacts

of preambles, this thesis proposes that the attacker may not always be able to take

control of the application without causing some anomalies. This is due to the fact

that, during the break-in, the attacker does not have full control of the application

and may not be able to control the execution of the vulnerable application.

Stide detects foreign sequences which are not in the normal database. Thus, Tan

et al. [96] investigated hiding in the detector’s blind spots in more detail by developing

variants of a core exploit manually with the objective of increasing the minimal foreign

37

sequence length. They reported that if the foreign sequence length is greater than the

sliding window size of Stide, an attack could evade detection. In their experiments

they employed Stide on traceroute and passwd applications. For traceroute, normal

behaviour was obtained by “executing traceroute to acquire diagnostic information

regarding the network connectivity between the localhost and nis.nsf.net” [96]. For

the passwd application, normal data was obtained by executing the passwd command

without any arguments, which replaces the old password with the new one provided

by the user. They provided a detection map for Stide, which shows the detection

of an exploit (or lack thereof) as the sliding window size changes. When the foreign

sequence length becomes greater that the sliding window length, Stide is unable to

detect the exploits [96].

In a more recent work, Tan [99] employed four methods to change the behaviour

of the exploit manually by: (i) hiding an exploit in the blind spot of the detector;

(ii) modifying an exploit so that it resembled like a normal behaviour; (iii) hiding

an exploit so it resembled a less dangerous exploit; and (iv) modifying an exploit so

that it looked like a different exploit. In their experiments, Stide was employed to

monitor the exploits against restore, tmpwatch and kernel/traceroute applications.

Normal behaviour for Restore was obtained by “monitoring a regular user executing

the restore system program to retrieve backup data from a remote backup server”

[99]. Normal behaviour for tmpwatch was generated by populating a short directory

tree with files under the /tmp directory and executing the tmpwatch program to clean

files more than 5 days old. Normal behaviour for the kernel attack was not obtained

since the vulnerability in the kernel was used to exploit another vulnerability in

traceroute. In their paper, they argue that malicious acts and anomalous behaviour

are not synonymous, which is to say, sophisticated attackers can alter their actions

to hide their exploit as normal behaviour or as a less serious exploit.

Using a categorization scheme, Gao et al. [32] divided anomaly detectors into

three categories: black-box detectors [30] [91] which only make use of system calls,

gray-box detectors [89] [27] which use – in addition to system calls – runtime ob-

servations such as program counter values and return addresses stored in the stack.

White-box detectors [103] [26] however, incorporate information from the source code

38

as well, which makes it difficult to hide the attacks. The authors presented a system-

atic study, which showed the benefits and overheads of changing gray-box anomaly

detector parameters such as (1) the amount of runtime information, (2) the atomic

unit which the detector monitors and (3) the sliding window size. They employed

the ftpd and httpd services on a Red Hat host and generated their proprietary data

by developing test runs to generate system call traces along with program counter

and return address records. However, they did not provide any information on how

the test runs were developed. Experimental results indicated that expanding the

model by using more information and increasing window size results would increase

the mimicry exploit length. In other words, attackers would need more code to hide

their actions. Although it is more difficult to evade white-box detectors, the authors

determined that they are platform dependent and are not universally applicable [32].

In addition to the systematic study, the authors presented a methodology to forge

the program counter information manually on statically linked executables so that

the gray-box detector [89] [27] does not detect an anomaly in the return addresses

even though system calls are made by the exploit code [32].

Kruegel et al. [56] developed a methodology against adaptive detectors (i.e. Stide

variants [30] [91] [89] [27] [103] [26]). Kruegel et al. [56] implemented the automa-

tion using a static tool at the Intel x86 assembly level to redirect control flow using

symbolic execution. It is assumed that at the end of a system call execution, the pre-

vention mechanism (such as [15]) will return the execution to the correct code. This

implies that attackers can execute only one system call before the program regains

control, which may not be sufficient in most cases because attackers need first to

elevate their privilege, then spawn rootshell. Therefore, the objective of the attacker

is to deploy the attack by gaining and relinquishing the control of the program so

that the application code is forced to return to the attack code after the overflow

occurred. This implies that the attacker will rearrange the execution environment

(including CPU registers, writable memory locations such as stack, heap and data

segment) instead of executing the system calls explicitly. To this end, the changes in

the execution environment are expressed as polynomial expressions. The condition,

which forces a malicious pointer modification, is added to the constraints. If the

39

resulting linear inequality has a solution, the attacker can find a configuration which

can deploy an attack. They employed their methodology on the httpd, ftpd and imap

services. Since their work is a comprehensive application analyser, they did not utilize

any anomaly detectors (i.e. they analysed vulnerable applications to determine if a

vulnerability exists). Needless to say such methodology assumes a full access to the

source code and executables of an application (i.e. every time the source code changes

or updates are applied, the analysis needs to be repeated). Although such a ‘white-

box’ methodology performs a comprehensive search for mimicry exploits, enormous

expert knowledge is required to define the execution environment state as polynomial

expressions. Furthermore, having an expert define the execution environment had

the potential for over-simplification of the system state or introducing biases due to

the expert’s view of the execution environment.

Giffin et al. [34] generated mimicry exploits against Stide [30] and variants [91]

[89] [103] [26] by applying automatic model checking to prove that no reachable op-

erating system configuration corresponds to the effect of an exploit. In their work,

they utilized two models: (1) the system call behaviour of an application and (2) a

model of the security critical system state, which describes the malicious operating

system state. An approach based upon push down automata was employed to im-

plement a program model which can search exhaustively for any sequence of system

calls allowed by the program which can lead to a malicious operating system state.

If there exists a sequence in the program model which can be employed to induce

a malicious operating system state, it indicates that a mimicry exploit exists. In

their experiments, they employed the ftpd, restore, traceroute and passwd applica-

tions. The ftp data was obtained from Forrest et al. [109], whereas the data for the

remaining applications were generated by the authors following the approach which

Tan described [96]. Numerous malicious activities were defined such as spawning a

UNIX shell, writing to the password file and changing the permission of the pass-

word file to world-writable. Consequently, they found malicious sequences in the

normal behaviour definition of Stide for all four programs. Although the search for

malicious sequences was automatic in their approach, the operating system model,

40

application (program) model and system call specifications as well as the attack con-

figuration were generated manually. This implies that for different operating systems,

new operating system models need to be developed. Furthermore, proof of successful

detection and the existence of mimicry attacks depend upon the careful abstraction

of the operating system state. In other words, if the operating system is not defined

properly, it may hinder the search process. The operating system models [34] are

merely summaries of the actual operating systems and they were employed due to

the computational cost of searching for mimicry exploits against the actual operating

system. Thus, the search for mimicry exploits was limited to the conditions defined

by the operating system models.

Parampalli et al. [77] proposed a methodology for generating mimicry exploits

manually against “powerful system call monitors.” A “powerful system monitor” is

defined as a detector which has full knowledge of the system call parameters as well

as their roles in the execution of the system call. They introduced the persistent

interposition attack concept in which the objective of the attacker is to modify the

read and write system calls to deploy the exploit. Their methodology is similar

to man-in-the-middle attacks since the objective of the exploit code is to intercept

and modify the read and write system calls which the victim application makes.

They employed their methodology on a server running the Apache web server. Their

results on the Apache web server showed that although the persistent interposition

attacks were not powerful enough to obtain a rootshell, they could evade monitors

which monitor system call arguments while achieving goals such as stealing financial

information or impersonating web servers. Although the methodology aimed to evade

“powerful system call monitors,” their work focused on the analysis of the vulnerable

applications (from the perspective of persistent interposition attacks) and did not

provide specifics on the detection methodologies to which the method applies.

The work by Sparks et al. [92] shares similarities with the approach proposed

in this thesis. Sparks et al. [92] employed Grammatical Evolution as a ‘black-box’

fuzzer in which the objective is to craft a set of inputs which will cause the program

to take the execution path leading to a potentially unsafe string copy. The feedback

to the fuzzer takes the form of a Markov Model which encapsulates the control flow

41

graph hence analysis of the source code is necessary in their work . Each individual

corresponds to the set of inputs to the application being tested and the individuals

are evaluated based upon how close they get to executing an unsafe string copy (with

respect to the Markov Model). The authors [92] tested their approach on a Windows

Ftp server (namely, tftpd.exe) and their results indicated that an approach based

upon evolutionary computation is quicker than a random search for finding solutions.

In terms of evading misuse detectors, Vigna et al. [102] described a methodology

to generate variations of an exploit automatically against Snort and ISS RealSecure

to test the quality of detection signatures. Their main motivation was to provide a

methodology which could evaluate the effectiveness of the signatures against evasion

attacks. Stochastic modification of code was employed to generate variants of exploits

in order to render the exploit undetectable. Techniques such as packet splitting,

evasion and polymorphic shellcode were proposed [102]. They employed their evasion

techniques on numerous exploits such as ftpd, httpd, imap, rpc and ssl. The modified

exploits were then sent to the misuse detectors monitoring network traffic. Their

results [102] showed that their evasion methodology succeeded in evading the detectors

on numerous exploits, although certain exploits (such as the rpc) were detected in

spite of the evasion techniques used. Furthermore, in their experiments, signatures

from Snort were available to the attacker but the signatures from ISS RealSecure

were not (the company chose not to share them, which is not surprising since the

detector is a proprietary software on the market). Their results indicated that their

approach was not as effective when the signatures of the target detector were not

available to the attackers. This implies that generating attacks against a ‘black-box’

detector constitutes a more difficult problem than generating attacks against a ‘white-

box’ detector since the attackers have to generate attacks based upon their limited

knowledge of the detector.

Chapter 4

Intrusion Detection Systems Utilized

As discussed in Section 3.1, two methodologies can be employed for detecting buffer

overflow attacks: misuse detection and anomaly detection. In misuse detection, iden-

tifying characteristics of a buffer overflow attack such as repeating NoOPs are sought

in the data stream which the detector monitors. Conversely, in anomaly detection, a

normal behaviour model is employed to detect deviations. This thesis employs detec-

tors from both methodologies. For misuse detection, Snort was employed whereas for

anomaly detection, Stide, pH, pH with a schema mask (pHsm), the Markov Model

and Neural Network-based detectors were employed. The common attributes of the

detectors which make them suitable for thesis experiments are that: (1) they are

publicly available (in terms of source code or the description of the methodology em-

ployed) and (2) they do not require access to the source code of the applications nor

do they require modifications to the environment in which they work.

From the perspective of a ‘white-hat’ attacker, the objective for evading misuse

detectors is to find an attack which can deploy without triggering a signature, whereas

the objective for evading anomaly detectors is to modify the attack so that it conforms

to the normal behaviour of the detector.

4.1 Misuse Detectors

In the misuse detection approach, the detection process involves searching for known

attack signatures on network or system resources. One of the main drawbacks of

such systems is that they can only detect known attacks which are included in the

signature database. A common example of a signature database is an array of link

lists. This structure enables a search to be performed on only the applicable test

conditions, thus minimizing computational requirements.

42

43

4.1.1 Snort

Snort is one of the better-known lightweight IDSs, which focuses on performance,

flexibility and simplicity. It is an open-source intrusion detection system which is

now in quite widespread use [87]. It can detect various attacks and probes including

instances of buffer overflows, stealth port scans, common gateway interface attacks,

and service message block system probes. Hence, it is an example of an active in-

trusion detection system which detects possible intrusions or access violations while

they are occurring. Current versions of Snort provide IP de-fragmentation and TCP

assembly to further the detection of attacks, albeit at the expense of having to view

the complete attack data.

4.2 Anomaly Detectors

Anomaly detection systems attempt to build models of normal user behaviour and

use this as the basis for detecting suspicious activities. In this way, known and

unknown (i.e. new) attacks can be detected as long as the attack behaviour deviates

sufficiently from normal behaviour. When a buffer overflow attack is deployed, a

vulnerable privileged program is exploited to do something which it is not supposed

to do. This implies that it is possible to observe a change in program behaviour.

However, should the attack be sufficiently similar to normal behaviour, it may not be

detected.

The anomaly detectors discussed in this section monitor system call traces to

detect the attacks. System calls are operating system routines which provide the

interaction between the applications and system resources such as memory, disks

and peripherals. Given that the operations which alter the system state are handled

through system calls, monitoring the applications at the system call level provides a

suitable granularity for detecting the attacks [52].

Although numerous alternative detectors exist for detecting buffer overflow at-

tacks, there are various traits which make the anomaly detectors discussed in this

section suitable for the experiments. First, they employ different detection method-

ologies while monitoring the same resource (i.e. the system calls that the application

44

makes). This implies that evolving attacks against the detectors discussed in this

section can demonstrate that evasion attacks can be evolved against a variety of de-

tectors. Second, they provide feedback in the form of anomaly rates and delays which

can be utilized to guide the search for the evasion attacks.

4.2.1 Stide

Forrest et al. [30] employed a methodology motivated by immune systems. This char-

acterizes the problem as distinguishing ‘self’ from ‘non-self’ (normal and abnormal

behaviours respectively). An event horizon is built from a sliding window applied

to the sequence of system calls made by an application during normal use. The se-

quences formed by the sliding window are stored in a table which establishes the

normal behaviour model. During the deployment (detection) phase, if the pattern

from the sliding window is not in the normal behaviour database, it is considered a

mismatch.

Input to the Stide detector [109] takes the form of the system call traces of an ap-

plication for which the detector is trained. Specifically, Stide builds a normal database

by segmenting the training data (of system call traces) into fixed length sequences

[97]. To do so, a sliding window of size N is employed over the training dataset and

the resulting system call patterns are stored in the normal database. During test-

ing, the same sliding window size is employed on the data. The resulting patterns

are compared against the normal database and if there is no match, a mismatch is

recorded. Given a window size of N and system call trace length M , the anomaly

rate for the trace is calculated by dividing the number of mismatches by the number

of sliding window patterns (i.e. M −N +1). The experiments provided in this thesis

employ Stide with the default training parameters, which are listed in Table 4.1.

Table 4.1: Stide configuration parameters

Parameter Setting

Sliding window length 6

45

4.2.2 Process Homeostasis (pH)

Process Homeostasis (pH) [91] is an anomaly detector based upon Stide which employs

a detection methodology similar to Stide. pH is implemented as an extension to the

Linux 2.2 Kernel. Therefore, pH monitors system calls more efficiently by capturing

system calls directly at the kernel level as opposed to Stide which employs Strace1 to

capture system calls. pH monitors the changes in short sequences of system calls by

employing look-ahead pairs. While employing the sliding window approach, pH does

not store the sliding window patterns but records tuples, which consist of the current

and past system calls and the sliding window location. Somayaji [91] established that

the look-ahead method is more efficient to store and could potentially converge to

a normal profile more quickly than the sequence method. Additionally, tolerization

and sensitization concepts were introduced. Tolerization allows pH to improve false

alarm rates by leaving out minimal anomalies, which are likely to be caused by slight

changes in normal behaviour. Sensitization prevents abnormal behaviour from leaking

into the normal behaviour database [91].

During training, a sliding window is employed over the training set and a normal

database is built which can be represented as a three dimensional matrix. The di-

mensions are: (1) the current system call; (2) the previous system call on the sliding

window; and (3) the location of the previous system call on the sliding window. Dur-

ing testing, the same sliding window is employed on the test data. If a given sliding

window sequence produces a look-ahead pair which is not in the normal database, a

mismatch is recorded. Similarly to Stide, given a window size of N and system call

trace length M , the anomaly rate for the trace is calculated by dividing the number

of mismatches by the total number of look-ahead pairs.

pH responds to attacks by slowing down the process. Delay is an exponential

function of the locality frame count which aims to identify the clusters of anomalies.

To this end, pH maintains a count of how many of the past LF (usually 128) system

calls were anomalous. Process delays can affect the execution of a program substan-

tially when a cluster of anomalies is observed. In the experiments, pH was employed

with the default training parameters, which are listed in Table 4.2.

1Strace can be downloaded from http://sourceforge.net/projects/strace/.

http://sourceforge.net/projects/strace/

46

Table 4.2: pH configuration parameters

Parameter Setting

Look-ahead pair window size 9
Locality frame window size 128
Delay Factor 1
Suspend execve after 10 anomalies
Suspend execve duration 2 days
Anomaly limit 30
Tolerize limit 12

4.2.3 Process Homeostasis with a Schema Mask (pHsm)

Inoue and Somayaji [38] discussed the differences between look-ahead pairs and se-

quences. In their paper, the authors also proposed an improvement to pH based

upon the random schema mask concept. Their main motivation was the observa-

tion that longer windows improve detection rates hence there exists a potential to

increase the difficulty of generating mimicry attacks against pH (and indirectly Stide

and variants). This improved pH is called pH with a schema mask (pHsm) in this

thesis.

In pHsm, a longer sliding window (usually 20 [38]) is maintained and a number of

taps (generally 9 which is also the sliding window size of the original pH [91]) are taken

from the sliding window. The locations of the taps are determined randomly before

training and this location information constitutes the schema mask. The authors

state that introducing a schema mask creates another source of generalization [38].

The schema mask method has the following advantages: (1) pH can monitor a longer

time window without increasing computational requirements (2) if the attacker does

not know the schema mask, he/she would have to develop mimicry attacks based

upon window sizes. The configuration parameters for the detector are detailed in

Table 4.3.

47

Table 4.3: pHsm configuration parameters

Parameter Setting

Look-ahead pair window size 20
Number of taps taken from the sliding window 9
Tap locations Determined before training
Locality frame window size 128
Delay Factor 1
Suspend execve after 10 anomalies
Suspend execve duration 2 days
Anomaly limit 30
Tolerize limit 12

4.2.4 The Markov Model-Based Detector

The Markov Model is a statistical modelling technique which is useful for building

probabilistic models of event sequences evolving in time. Markov Models have been

utilized within the context of speech recognition and intrusion detection systems [114]

[98] [33] as in the related case of a Finite State Automata representation [89]. The

Markov Model was selected as an anomaly detector in this thesis because: (1) it can

build probabilistic models using exemplars from only one class (i.e. normal behaviour)

and (2) it can capture temporal (i.e. sequence) information without employing a

sliding window.

Although higher order Markov Models exist where the current state depends upon

a number of previous states, the Markov Model anomaly detector implemented in this

thesis employs a first order Markov Model. In a first order Markov Model, the next

state is only dependent upon the current state, and such an assumption is widely

employed in these systems to reduce the number of ‘free parameters’ which require

estimation. Given such an architecture, the following parameters are defined: a set

of ‘states’ I, a probability transition matrix P , which describes the condition under

which a transition between states occurs, and the probability distribution of the states

λ.

In order to establish values for the above model parameters, the Baum-Welsh

model is assumed [7]. Let I be a countable set of states, where i, j ∈ I represent

48

states. If there are N states in I, a first order Markov model can be represented as

a two-dimensional N by N matrix P =
(

p(i, j) | i, j ∈ I
)

. Let Xt define the state at

step t. From the training data, the probability of transition from state i to j, p(i, j),

can be calculated as follows;

p(i, j) =
C(Xt = j, Xt−1 = i)

∑

i C(Xt−1) = i)
(4.1)

In Equation 4.1, C(Xt = j, Xt−1 = i) is the number of times state j follows state i

in the training data. The ith row of the P is the probability distribution of moving to

all states from state i. This probability distribution is also called λi. Such a scheme

was used previously to act as a generic model for TCP packets with the objective of

summarizing normal data [50]. For each test sequence, the Markov Model estimates

log likelihood as follows:

LLseq =
∑

T

log
(

p(Xt, Xt−1)
)

(4.2)

Given that log likelihood in Equation 4.2 is dependent upon the attack size and

therefore not suitable for distinguishing between attack and normal behaviour, the

detection decision is based upon a characterization of state transition behaviour. A

similar concept was employed in previous Markov Model detector approaches [98]

and in Stide [109]. After the Markov Model is trained, a test sequence is presented.

If there exists a transition in the test sequence which was not encountered during

training (hence, p(i, j) = 0), a mismatch flag is set. The count of the mismatch flag

is maintained, and the anomaly rate is defined in the manner provided in Equation

4.3.

Anomaly Rate =
number of mismatch flags

total number of transitions
(4.3)

Such an anomaly rate implies that, if the test sequence follows the training model (i.e.

normal behaviour), it will encounter zero or low numbers of mismatch flags. Thus a

low anomaly rate is assigned. The configuration parameters for the Markov Model

detector are provided in Table 4.4.

4.2.5 Auto-Associative Neural Network

In the experiments detailed in this thesis, an auto-associative neural network was

employed as an anomaly detector. As opposed to the other detectors discussed in

49

Table 4.4: Markov Model parameters

Parameter Setting

Order First order
Number of states 223 (Number of system calls)
Training Algorithm Baum-Welsh

the previous sections which employ sequence information, the input to the auto-

associative neural network takes the form of the frequency distribution of system calls.

This approach bears similarities to the detector employed by Kang et al. [43], which

uses a bag of words representation as the detector input. In such a representation

scheme, system calls are mapped to integers. Given N system calls, a system call

trace is summarized into an N dimensional vector, where each element of the vector

maintains the number of times the system call is encountered in the trace. Dividing

each element in the vector by the total number of system calls provides the system

call frequency distribution for the trace. As such, the resulting vectors constitute

the normal behaviour characteristics. Since the frequency distribution of a trace is

calculated after the trace is complete, the auto-associative neural network detector

can be considered as an ‘off-line’ detector, which provides post-mortem analysis of

the system call traces after they are executed.

Given the frequency distribution vector for the test trace, the detection is therefore

based upon the divergence between the frequency distribution vectors of the test trace

and the ‘normal behaviour’. Although it is possible simply to store the frequency dis-

tribution vectors from the normal system call traces and facilitate detection using a

similarity metric, this thesis employs auto-associative neural networks to build models

of the normal behaviour system call frequency models. Training a machine learning

algorithm on the frequency distributions creates a generic model which encapsulates

the ‘acceptable’ system call frequency distributions for normal behaviour. Further-

more, training a detector on numerous frequency distributions allows the detector to

‘learn’ various characterizations of normal behaviour, hence producing a more robust

detector.

50

Although different neural network approaches such as evolutionary neural net-

works were applied to anomaly detection [36], the application of an auto-associative

neural network is new to anomaly detection. The auto-associative neural network is a

bottleneck network which was employed in financial forecasting [60], principal compo-

nent analysis [55], document classification [64] and novelty detection [40]. The main

idea behind an auto-associative neural network is to develop models from one-class

data and make decisions on the test data based upon the similarities to or diversions

from the model which the auto-associative neural network encapsulates.

Given q dimensional data, a multilayer perceptron with p nodes in the hidden layer

(p ≪ q) and q nodes in the output layer is trained. Figure 4.1 shows an example of an

auto-associative neural network with 6 inputs/outputs and 3 neurons in the hidden

layer. The neural network aims to produce an output similar to the inputs provided

during training. When a test input is presented, the neural network will produce the

output similar to the input if the input is similar to what was encountered during

training.

Figure 4.1: An auto-associative neural network

From the perspective of anomaly detection, if the applied input does not produce

an output similar to the input, it is considered anomalous. In order to measure the

degree of anomaly and produce an anomaly rate, the given input, X = (x1, x2 . . . xn),

and the produced output, Y = (y1, y2 . . . yn), are compared using Euclidean distance.

Euclidean distance in Equation 4.4 varies between 0 and 1, where larger numbers

51

indicate anomalous behaviour. The result of the Euclidean distance is then adjusted

to vary between 0 and 100 so that the neural network produces an output similar to

the anomaly rates which the other detectors such as Stide and pH produce.

d =

√

√

√

√

n
∑

i=1

(xi − yi)2 (4.4)

The normal system call traces detailed in Section 8.2.1 are summarized into 223

dimensional vectors where each dimension corresponds to the frequency of the system

call associated with it. The hidden layer has 15 neurons and the output layer has 223

neurons. The network is trained with conjugant gradient backpropagation. During

training, an error is calculated by subtracting the output Y from the target X. The

neural network employs a mean square error, Equation 4.5, to test for termination.

mse =
1

n

n
∑

i=1

(xi − yi)
2 (4.5)

The training parameters for the Auto-assocative Neural Network are detailed in

Table 4.5.

Table 4.5: Auto-associative Neural Network parameters

Parameter Setting

No. of neurons in hidden layer 15
Hidden layer transfer function Hyperbolic tangent sigmoid (tansig)
No. of neurons in output layer 223
Output layer transfer function Linear (purelin)
Training function Conjugant gradient backpropagation
Maximum epochs 1000
Minimum mean square error 1.00E-06

Chapter 5

Learning Algorithms Utilized

In this thesis, two Evolutionary Computing (EC) algorithms are investigated for

exploit generation, namely Grammatical Evolution (GE) and Genetic Programming

(GP). Grammatical Evolution [76] and Genetic Programming [53] [58] share several

properties with Evolutionary Computation [24] relevant to this work.

1. Representation: the representation of individuals takes the form of a com-

puter program, naturally fitting the objective of designing alternative malicious

code.

2. Quantification of the Performance: the performance of the solutions is

quantified using a fitness function in which there are no smoothness constraints

on the form which such a function should take (unlike neural networks, where

the cost function must typically be differentiable). As such, a fitness function

provides a greater flexibility in expressing the objectives of the learning algo-

rithm in terms meaningful to the application domain (vulnerability testing, in

this case).

3. Code Bloat: the code bloat phenomenon in EC provides the attacker a way to

hide the true intention of the attack. Introns correspond to the code segments

in the program which do not contribute explicitly to the functional properties

of the exploit. Introns are generally removed to produce concise solutions since

they do not contribute to the functional operation of the individual. However,

in the case of mimicry attacks, introns are beneficial to the attacker, if their

statistical characterization matches normal behaviour as measured by the de-

tector. During the fitness calculation, the feedback from the detector guides the

evolution toward the intron code that matches the statistical characterization

of normal behaviour. Consequently, this represents a scenario, in which introns

52

53

have a specific measurable contribution to the utility of the individuals; whereas

the general practice is to drop the code corresponding to introns post training.

4. Population-based: being based upon a population of candidate solutions,

the opportunity exists to build multiple exploits per run. Furthermore, with

the ability to satisfy multiple (and sometimes conflicting) goals, maintaining a

population of candidate solutions has the potential to provide solutions which

optimize the different goals of the attacker.

5. Multi-objective Fitness Function: support for the multiple objectives of an

attack is easy to provide without combining the objectives in a linear fashion (by

assigning weights to each objective), which is a natural extension of qualifying

the performance of solutions using the fitness function.

Section 5.1 introduces a generic Evolutionary Computation model to define the

terminology and familiarize the reader with the concepts of EC. Grammatical Evo-

lution and Genetic Programming are merely representations within the generic EC

model. To this end, Grammatical Evolution is discussed in Section 5.2 and two ver-

sions of Genetic Programming are discussed in Sections 5.3 and 5.4.

This chapter introduces the above-mentioned algorithms without focusing on a

particular problem. The problem-specific details of each algorithm, such as represen-

tation, function sets and fitness calculation are detailed further in Chapters 6, 7 and

8.

5.1 A Generic Evolutionary Computation Model

Evolutionary Computation draws inspiration from a Darwinian Model of Evolution,

where a population of individuals (i.e. candidate solutions) is maintained. In the

Darwinian Model of Evolution, the traits of an individual (i.e. the observable char-

acteristics) are controlled by its genes. Similarly in EC, the traits of an individual

are determined by its genes. A genotype consists of a string of genes. In EC, the

genes in a genotype are generally in the form of a string of numbers (integer, binary

or otherwise). Genotypes translate to phenotypes, which are the physical and observ-

able characteristics of an individual. In other words, the genotype in EC represents

54

the individual (e.g. binary vs. integer representation), whereas the phenotype is its

observable characteristics (e.g. the resulting program or expression).

The type and the representation of the phenotypes depends upon the genotype-

phenotype mapping methodology, which is where the EC algorithms diverge. Nu-

merous EC algorithms exist but in particular, Genetic Algorithms [70], Genetic Pro-

gramming [53] [58] and Grammatical Evolution [76] are of interest.

In terms of genotype-phenotype mapping, Grammatical Evolution in Section 5.2

employs a context-free grammar to map the genotype to a phenotype in the form of a

program. On the other hand, Genetic Programming algorithms detailed in Sections

5.3 and 5.4 employ function and terminal sets to map the genotype to the phenotype

program. Therefore both GE and GP represent the individuals as programs in an

arbitrary language, however the genotype-phenotype mapping method varies. In

contrast, Genetic Algorithms (GAs) are not concerned with mapping the genotype to

a phenotype since each individual can be represented simply as a string of numbers. A

potential application of GAs is scheduling problems where the objective is to optimize

a sequence of events. A comparison of GAs and GPs is made in Section 5.4.1, since

the Genetic Programming detailed in Section 5.4 bears similarities to GAs.

In EC, the individuals in a population reproduce and create children for the next

generation. Natural selection ensures that the favourable characteristics of the indi-

viduals will have more chance to propagate to the next generation. This implies that

the individuals with favourable phenotypes will have a better chance to survive and

reproduce, although the the stochastic nature of the selection process allows weaker

individuals to survive as well, albeit with a smaller chance.

The fitness of an individual is expressed relative to the phenotype whereas the

reproduction operators such as mutation and crossover are applied to the genotype,

where the latter is part of a process for stochastic credit assignment. In such a scheme,

fitter individuals have a better chance of transferring their genetic material to the

next generation. EC algorithms implement reproduction operators in numerous ways

such as crossover, mutation and swap. Of course, reproduction in EC differs from

reproduction in biology since it is more targeted more toward the machine learning

paradigm.

55

Within the context of machine learning, reproduction in EC facilitates a search

for ‘fitter’ solutions within the search space. The search space can be defined as

the set of all candidate solutions to a problem along with a notion of ‘distance’

between the solutions. Three reproduction operators are of interest in this work:

crossover, mutation and swap. In crossover, two parents, which are selected from the

population, exchange genotypes to create children. In other words, children combine

the existing genetic material from both parents. Mutation, however, involves only

one parent, where the child is created by altering one or more genes in the parent.

Therefore, the child combines new genetic material with the genetic material from

the parent. Similarly, swap selects a parent and uniformly swaps two (or more) genes

to create a child. In other words, the child contains the same genetic material with

the parent but with a different order. By providing different combinations of the

existing genetic material (i.e. crossover and swap) and by introducing new genetic

material (i.e. mutation), reproduction operators provide the means to create children.

However, all three operators are stochastic, therefore there is no guarantee that the

resulting children have not been encountered previously.

In order to be able to compare individuals to determine the fittest individual, a

method for fitness assignment is necessary. For this purpose, EC employs a fitness

function which rewards individuals as they get better at achieving the target objec-

tive(s). A fitness function is problem dependent. For example, in case of a regression

problem, a typical fitness function will assign fitness based upon how close the indi-

vidual is to representing the target function. In the case of generating attacks against

a detector, the fitness function ‘rewards’ individuals which produce fewer alarms or

anomalies.

Furthermore, the training of an EC algorithm involves the definition of selection

and replacement operators. A selection operator defines which individuals in a popu-

lation will be selected as parents to participate in reproduction and the replacement

operator determines which individuals ‘survive’ to the next generation. In the case of

a uniform selection scheme, every individual in the population has the same chance

of reproducing regardless of their fitness. However, in fitness proportional selection,

individuals with greater fitness have a greater probability of reproducing. In terms

56

of replacement, the children can replace their parents or other individuals in the

population which have lower fitness.

Various evolution strategies can be employed for training EC algorithms. In a

generational approach, every individual in the population participates in reproduc-

tion, therefore the entire population can change in the next generation. Alternatively,

tournament selection selects a smaller set of individuals from the population for re-

production. Commonly, the children of the better performing half of the tournament

replace the individuals in the worse half of the tournament. Such a replacement

scheme is called ‘elitist’ which implies that the fittest individual is always retained in

the population.

As discussed previously in this chapter, Grammatical Evolution and Genetic Pro-

gramming differ mainly in their representation and genotype-phenotype mapping.

In Sections 5.2, 5.3 and 5.4, the discussion of each algorithm is divided into four

subsections. Representation sections deal with not only the genotype representation

(linear versus. tree representation) but also the genotype-phenotype mapping scheme

(context-free grammars versus function and terminal sets). Training sections define

the selection and replacement operators (generational versus tournament selection)

and provide a high level overview of the training process. The fitness function sections

discuss the details of the fitness calculation pertinent to the Evolutionary Computa-

tion, including the support for multi-objective optimization, when applicable. The

discussions of the problem specific details of the fitness calculation are left to the

corresponding chapters (namely, Chapters 6, 7 and 8). The search operator sections

detail the reproduction operators such as crossover, mutation and swap operators

which are developed based upon the representation and the problem being solved.

5.2 Grammatical Evolution

Grammatical Evolution is an Evolutionary Computation method which can produce

programs in an arbitrary language defined by a context-free grammar. As discussed

previously in this chapter, the characteristics which make GE suitable for the ex-

periments in this thesis are that the solutions take the form of computer programs

and the performance of a solution is determined by a fitness function. The former

57

characteristic allows GE to generate buffer overflow attacks in an arbitrary language,

subject to the limitations of the representation, whereas the latter characteristic pro-

vides a method for describing the various goals of buffer overflow attacks in order to

facilitate the search process. Furthermore, the context-free grammar in GE ensures

that the genotype to phenotype mapping process produces valid programs (with re-

spect to the grammar), regardless of the search operators. This is a clear advantage

of GE over other EC algorithms, particularly GP, in which the function and terminal

sets should be developed to prevent creating invalid instructions such as a division

by zero condition.

In GE, individuals are composed of strings of codons where each codon is repre-

sented as an integer. In GE, codons are analogous to the genes of a genotype. The

genotype is the specification of an individual (e.g. binary vs. integer representation)

whereas the phenotype is its observable characteristics (e.g. the resulting program

or expression). A genotype (a string of codons) is translated into a phenotype by

employing a context-free grammar, typically in Backus-Naur form. The use of the

context-free grammar ensures the validity of the individuals, regardless of the how

search operators alter the genotype.

5.2.1 Representation

In GE, individuals are represented essentially as sequences of integers. The grammar

in Backus-Naur form (BNF) defines the phenotype (i.e. the program) upon which the

fitness is calculated. Starting from the first codon (gene), GE applies the grammar

to the individual until the complete program is generated.

A sample GE grammar is provided in Figures 5.1. Furthermore, Figure 5.2 pro-

vides an example of a GE individual in genotype form.

The mapping begins from the start symbol <expr>, which can take 4 different

forms according to rule (A) in Figure 5.1. GE determines which grammar rule to

utilize based upon the first codon of the genotype. For example, in Figure 5.2, the

first codon is 28 and the rule which applies to <expr> (i.e. rule (A) in Figure 5.1) has

four types. Calculating the modulus, 28 mod 4 = 0, the first codon is mapped to the

rule (A.0) in Figure 5.1 and the expression becomes <expr> <op> <expr>. Using the

58

(A) <expr> ::= <expr> <op> <expr> (0)

| (<expr> <op> <expr>) (1)

| <pre-op> (<expr>) (2)

| <var> (3)

(B) <op> ::= + (0)

| - (1)

| / (2)

| * (3)

(C) <pre-op> ::= Sin (0)

| Cos (1)

(D) <var> ::= X (0)

| Y (1)

| 1.0 (2)

Figure 5.1: A sample GE grammar

28 35 200 91 130 75 47 170 68 84 181 123 56 210

Figure 5.2: The sample individual in genotype format

59

same process, the first parameter of <expr> <op> <expr> is mapped by using the

second codon. The mapping process continues until a complete program is formed or

the maximum number of wrapping events is reached. Using the first 8 codons, the

genotype in Figure 5.2 is mapped to the phenotype X * Cos (1.0). The mapping

process for the sample individual is summarized below:

<expr>

28 mod 4 = 0 <expr> <op> <expr>

35 mod 4 = 3 <var> <op> <expr>

200 mod 4 = 0 X <op> <expr>

91 mod 4 = 3 X * <expr>

130 mod 4 = 2 X * <pre-op> (<expr>)

75 mod 2 = 1 X * Cos (<expr>)

47 mod 4 = 3 X * Cos (<var>)

170 mod 3 = 2 X * Cos (1.0)

If GE reaches the end of the individual before the mapping is complete, it ‘wraps

around’ and starts from the first codon. Note that although the codons remain the

same in integer value, a codon can be mapped to different values based upon the

current rule which GE utilizes. If the individual does not map completely after a pre-

determined number of wraps, the mapping stops and the individual is assigned the

minimum fitness value. Conversely, if GE forms the expression completely without

using all codons, the remaining codons are ignored. The GE implementation employed

in this thesis utilizes a fixed length representation, which implies that all individuals

have the same number of codons.

5.2.2 Training

The main GE training function is provided in Algorithm 1. During the GE training,

fitness sharing is employed to encourage diversity in the population. The radius

for fitness sharing changes as the new individuals are introduced to the population,

therefore the radius is recalculated every 10 generations.

Given the number of niches and the set of attributes upon which the shared

fitness is calculated, the radius is determined by the minimum and maximum values,

60

Algorithm 5. Fitness calculation involves dividing the raw fitness by the niche count.

The niche count is based upon the individual’s similarity to other individuals. In other

words, shared fitness decreases if the individual is similar to many other individuals.

The calculation of shared fitness is detailed in Algorithm 4. The calculation of raw

fitness is problem dependent and is discussed in Section 6.2.1.

In the experiments for this thesis, O‘Neill’s GE implementation [76], which adopts

a generational approach, is employed as defined in Algorithm 1. In a generational

approach, the entire population can change in every generation. A recent analysis [41]

compared the steady-state approach with the generational approach and concluded

that both methods succeeded in solving the test problems albeit with different rates

of convergence and amount of code growth.

Employing a generational approach implies that all the individuals have the chance

to participate in the search at each generation. At each generation, the population

is arranged uniformly in pairs for crossover. With a certain probability, the single

point crossover detailed in Algorithm 6 is applied to the pairs. The crossover operator

produces two children. The children replace the corresponding parents if their fitness

value is greater. This scheme is elitist in nature which implies that the best individual

is always maintained in the population. The training continues until GE reaches the

maximum number of generations limit. Algorithm 1 does not provide any details on

fitness calculation since the fitness calculation is problem specific and will be discussed

in later chapters. The reader can assume that any change in an individual instigates

a fitness calculation.

The GE and GP algorithms discussed in this chapter require uniform selection and

the application of search operators with given probabilities. Therefore, Algorithm 2

provides a high level definition of a random number function whereas Algorithm 3

defines the algorithm which allows the application of a search operator with a given

probability. These functions are also employed in the discussion of Linear Genetic

Programming, Sections 5.3 and 5.4. In the algorithms discussed in this chapter, |DS|
defines the number of elements in the data structure DS.

61

Algorithm 1: Main GE training loop
Input : Number of generations GC, probability of crossover Pxo, niche count

q

Output: Population of individuals population[]

for gen = 1 to GC do1

if gen mod 10 = 0 then2

CalculateRadius(population[], q);3

end4

used = ∅ ;5

for pairs = 1 to |population[]|/2 do6

p1 = Random(x ∈ Z
+ | (x ≤ |population[]|) ∧ (x /∈ used)) ;7

used = used ∪ {p1} ;8

p2 = Random(x ∈ Z
+ | (x ≤ |population[]|) ∧ (x /∈ used)) ;9

used = used ∪ {p2} ;10

if TestProb(Pxo) then11

children[] = ApplyXO(population[p1], population[p2]) ;12

if children[1].f itness > population[p1].f itness then13

population[p1] = children[1];14

end15

if children[2].f itness > population[p2].f itness then16

population[p2] = children[2];17

end18

end19

end20

end21

Algorithm 2: Random(...) function
Input : S, specification of a set of numbers

Output: r, which is an element of set S

// rand() is an arbitrary pseudo-random number generator

r = rand(r ∈ S);1

62

Algorithm 3: TestProb(...) function
Input : A probability prob, on which the decision is made

Output: outcome, which is 1 if the test is true and 0 if false

r = Random(x ∈ R | 0 ≤ x ≤ 1);1

if r < prob then2

outcome = 1;3

else4

outcome = 0;5

end6

5.2.3 Fitness Function

EC employs a fitness measure to quantify the optimality of individuals. Therefore,

the fitness function ‘rewards’ individuals so that they can be evaluated. Commonly,

the individuals with higher fitness values will have a better chance of survival. The

definition of the fitness function depends upon the problem. For some problems the

output of the individual can be compared with the desired output. The smaller the

difference between the output and the desired value will result in a greater fitness

value. On the other hand, in certain problems, fitness can be calculated in addition

to the outcome, by the consequences of the execution of the individuals. For example,

in the mimicry attack generation problem, the fitness of an attack depends not only

upon the success of the attack but also upon the stealth of the attack.

Given that the fitness function definition is problem specific, the details of the

fitness functions are covered in Section 6.2.1. This section focuses on the fitness

sharing concept which GE employs in the experiments in Chapter 6.

Fitness Sharing

Although EC is a population-based search algorithm, schema theory indicates that as

the fitter individuals reproduce, the population diversity decreases, resulting in the

population converging on a small region of the search space [59]. In order to encourage

the population to provide multiple unique solutions, the fitness sharing concept [19]

[68] is borrowed from Genetic Algorithms. In this case, the fitness of an individual

63

is discounted in proportion to the similarity with others in the population. Shared

fitness for an individual i is calculated based upon the raw fitness of the individual

divided by the niche count mi.

fshared =
fraw

mi

(5.1)

In Equation 5.1, the niche count mi increases as the similarity of an individual

to other individuals increases. This implies that the shared fitness decreases as the

individual becomes more similar to the other individuals in the population. The niche

count is calculated over the population of n individuals as detailed in Equation 5.2.

mi =
n

∑

j=1

sh(di,j) (5.2)

In Equation5.2, di,j denotes the Euclidean distance between individual i and j,

which is provided in Equation 5.3. In the example provided in this section, such

Euclidean distance is calculated based upon two attributes of the individuals, denoted

as X and Y . However, in general, it can be calculated on one or more attributes.

The individual attributes employed in the thesis experiments are discussed further in

Section 6.2.1.

di,j =
√

(xi − xj)2 + (yi − yj)2 (5.3)

If distance d is smaller than the determined radius σ, sharing function sh(d)

returns a value between 0 and 1, which increases as the distance decreases. Hence

the sharing function can be expressed as:

sh(d) =

{

1 − d
σ

if d < σ

0 if otherwise
(5.4)

Equation 5.4 implies that, for individuals with similar attributes, the niche count

will increase causing the shared fitness to decrease. σ is estimated from the population

by determining the current extremes. This takes the form of the minimum and

maximum values of the attributes X and Y . Given a number of niches q, σ can be

calculated as defined in Equation 5.5 [19].

σ =

√

(max(X) − min(X))2 + (max(Y) − min(Y))2

2
√

q
(5.5)

64

As the population changes during training, the boundaries formed by the at-

tributes X and Y will change as well. Since determining the boundaries requires a

pass of the entire population, σ is calculated every few generations (5 in the thesis

experiments).

An overview of the fitness calculation function is provided in Algorithm 4. Fur-

thermore, the overview of the function, which calculates the radius, is detailed in

Algorithm 5.

Algorithm 4: CalculateFitness(...) function
Input : Index of the individual ind, Raw fitness of the individual fraw, the

attributes of individuals on which the shared fitness is calculated ,X

and Y .

Output: Shared fitness fshared

mind = 0 ; // Niche count of the individual1

for i = 1 to |population[]| do2

if i 6= ind then3

xdiff = population[i].X − population[ind].X;4

ydiff = population[i].Y − population[ind].Y ;5

d =
√

(xdiff)2 + (ydiff)2 ;6

if d < σ then7

mind = mind + (1 − d/σ);8

end9

end10

end11

fshared = fraw/mind12

5.2.4 Search Operators

A crossover operator allows new individuals to be created from the existing individuals

in the population. Typically, the crossover operator involves selecting two individuals

from the population (i.e. the parents) and producing two new individuals (i.e. the

children) by combining material from each parent.

65

Algorithm 5: CalculateRadius(...) function
Input : Attributes of individuals on which the shared fitness is calculated X

and Y , number of niches q, a population of individuals population[].

Assumptions: Assumes that max(X) and min(X) functions exists to

determine the largest and smallest values in array X.

Output: The current radius σ

σ =

√
(max(population[].X)−min(population[].X))2+max(population[].Y)−min(population[].Y))2

2
√

q1

GE employs single point crossover where a crossover point is selected uniformly.

The crossover operator splits the parents into two fragments and combines the first

fragment from the first (second) parent and the second fragment from the second

(first) parent to create the first (second) children. Single point crossover is detailed

further in Algorithm 6.

66

Algorithm 6: ApplyXO(...) function
Input : A pair of individuals parent1 and parent2, from which the children

are created

Output: Two children children[]

// Note that the individuals are fixed length

len = |parents[1].gene[]|;1

xo point = Random(x ∈ Z
+ | x ≤ len) ;2

for loc = 1 to len do3

if loc < xo point then4

children[1].gene[loc] = parent1.gene[loc];5

children[2].gene[loc] = parent2.gene[loc];6

end7

else8

children[1].gene[loc] = parent2.gene[loc];9

children[2].gene[loc] = parent1.gene[loc];10

end11

end12

67

5.3 Linear Genetic Programming

In a similar fashion to Grammatical Evolution, Linear Genetic Programming (GP)

produces programs in an arbitrary language. However GP differs from GE in genotype

to phenotype mapping by employing function and terminal sets. Linear GP shares

common traits with both the Genetic Algorithms (GAs) [69] and the traditional tree

structured GP approaches [53], hence both methodologies are discussed to put Linear

GP [6] into perspective.

Genetic Programming differs from Genetic Algorithms in representation. In GAs

the individuals are represented as a string of numbers whereas traditional GP employs

a tree data structure. In GAs, the genotype may or may not require mapping to a

phenotype (i.e. the fitness function can simply use the sequence of numbers for

evaluation), whereas GP employs a function set and a terminal set to translate the

tree representation into a program in an arbitrary language. The terminal set defines

the variables and constants of a program whereas the function set defines the functions

which utilize the terminal set.

Similar to Genetic Algorithms, Linear Genetic Programming employs a string of

numbers as genotype. Furthermore, Linear GP employs an instruction set, which

consists of the function and terminal sets, to map the genotype to programs in an

arbitrary language. Therefore, linear GP is similar to the GAs in terms of the linear

representation of individuals and similar to traditional tree-structured GP in terms

of the mapping scheme.

Two training configurations are provided for linear GP in Algorithms 7 and 12.

The first configuration, which is detailed in this section, is employed in evolving

buffer overflow attacks in Chapter 7. The second configuration detailed in Section 5.4

utilizes Pareto ranking and is employed in evolving mimicry attacks against anomaly

detectors in Chapter 8.

5.3.1 Representation

The specific representation utilized in the Linear GP employed in this thesis defines

instructions as 4 bytes where 2 bytes are allocated for the function identifier (i.e. the

opcode) and one byte is allocated for each terminal of the function (i.e. the operands).

68

This implies that all instructions have the same number of bytes. Therefore, the first

two bytes of the instruction identify the function to be used whereas the last two

bytes identifies which terminal(s) the function uses.

A sample instruction set for GP is provided in Figure 5.3. The sample instruction

set consists of assembly instructions which can take registers or constants as param-

eters, which are provided in Figure 5.3 as well. Although linear GP employs 4 bytes

to define an instruction, the example provided in Figures 5.3 and 5.4 employs 1 byte

to define an individual for the sake of simplicity.

 0000 : INT <Const>
 0001 : MOV <Reg>, <Reg>
 0010 : MOV <Reg>, <Const>
 0011 : ADD <Reg>, <Reg>
 0100 : ADD <Reg>, <Const>
 0101 : XOR <Reg>, <Reg>
 0110 : NOT <Reg>
 0111 : PUSH <Reg>

Instruction Set Registers Constants

00 : AX
01 : BX
10 : CX
11 : DX

00 : 0x000b
01 : 0x0080
10 : 0x6962
11 : 0x732f

Figure 5.3: Sample GP instruction set and parameters

Phenotype

34

37

49

90

115

6

Integer
Representation

0010 00 10

0010 01 01

0011 00 01

0101 10 10

0111 00 11

0000 01 10

MOV AX, 0x6962

 MOV BX, 0x0080

 ADD AX, BX

 XOR CX, CX

 PUSH AX

 INT 0x0080

Binary
Representation

Figure 5.4: An example of a genotype-phenotype mapping for a linear GP individual

Figure 5.4 presents a linear GP individual the genotype of which is represented in

integer format. Based upon the mapping defined by the instruction set and parame-

ters, the genotype is mapped to a phenotype. To do so, each instruction is converted

69

to a binary representation. The first 4 bits of each gene define the instructions,

whereas the last four bits are allocated for the definition of the instruction parame-

ters (2 bits for each parameter, up to two parameters). For example, the integer 34 is

equivalent to 00100010 in binary. The first four bits, 0010, map to the instruction MOV

<Reg>, <Const>. In the list of registers in Figure 5.3, the 00 maps to the register AX

and the 10 maps to the constant 0x6962. If the instruction has one parameter (e.g.

in case of integer value 115, which maps to PUSH AX), the last two bits (i.e. 11) are

ignored. During the initialization of the population and the application of the mu-

tation operator, as new instructions are introduced to the individuals, the validity of

the individuals is checked to ensure that the instruction and parameter fields produce

a valid instruction.

In addition, two forms of instruction count are considered, namely the fixed length

and the variable length. In the simpler LGP model discussed in this section, each

individual is limited to a fixed instruction count, or page, implying that an equal

number of instructions is exchanged during crossover [37]. Conversely, in the case of

the second LGP model, Section 5.4, instruction counts of the children are allowed to

to vary relative to their parents, where the multi-objective model is able to provide

explicit feedback as to the utility of this property.

The main reason for replacing GE with linear GP in the experiments is the effec-

tiveness of the search operators in a GE representation. Namely, the search operators

in GE were not particularly efficient at manipulating register references during the

initial experiments in evolving buffer overflow attacks against misuse detectors [48].

In particular, the alterations made to the earlier codons in GE affect how the later

codons are mapped. This implies that even a single codon change in GE can change

the context of the individual substantially. The linear representation provides a more

direct method for evolving buffer overflow attacks successfully, where GP can modify

the operands more efficiently.

5.3.2 Training

In the training scheme detailed in Algorithm 7, GP employs the tournament selec-

tion provided in Algorithm 8, where four individuals are selected uniformly from the

70

population and sorted according to their fitness. The fitness calculation is problem

specific and is carried out by a runtime environment which is discussed in Section

7.2.2. Crossover in Algorithm 9, single instruction mutation in Algorithm 10 and

swap in Algorithm 11 aim to facilitate the search and are discussed in Section 5.3.4.

The better performing half of the tournament undergoes mutation, crossover and

swap operators and the resulting children replace the lower half of the tournament.

As opposed to a generational approach, this is a steady state approach where only

a small subset of individuals produce children at each iteration. The replacement

scheme is elitist in which the better performing individuals are always maintained in

the population. The training continues until the GP reaches the maximum number

of iterations limit. For the sake of simplicity the fitness calculation Algorithm 7 does

not cover the fitness calculation, which is detailed in Section 7.2.2.

5.3.3 Fitness Function

In the thesis experiments on evolving buffer overflow attacks against misuse detectors

in Chapter 7, the fitness of an individual is calculated by the runtime execution en-

vironment. The runtime execution environment executes the individual symbolically

and returns a fitness value between 0 and 10, where larger values indicate fitter indi-

viduals, based upon the success of the individual. Given that the fitness calculation

is problem specific, it is not covered in this section. The fitness calculation using a

runtime execution environment will be discussed in Section 7.2.2.

5.3.4 Search Operators

Crossover operators combine the existing genetic material in the population to pro-

duce children with a new ordering, whereas the mutation operators introduce new

genetic material to the population. The GP training scheme in Algorithm 7 em-

ploys page-based crossover, single-instruction mutation and instruction swap opera-

tors, which are discussed in this section.

71

Algorithm 7: Main GP training loop
Input : Number of iterations NumIterations, probability of crossover Pxo,

probability of mutation Pmut, probability of swap Pswap

Output: Population of individuals population[]

for iter = 1 to NumIterations do1

t[] = TournamentSelection(population[]) ;2

if TestProb(Pxo) then3

new inds[] = ApplyPageBasedXO(population[t[1]], population[t[2]]);4

end5

if TestProb(Pmut) then6

new inds[] = ApplyMutation(new inds[1], new inds[2]);7

end8

if TestProb(Pswap) then9

new inds[] = ApplySwap(new inds[1], new inds[2]);10

end11

// Children replace the lower half of the tournament

population[t[3]] = new inds[1] ;12

population[t[4]] = new inds[2] ;13

end14

72

Algorithm 8: TournamentSelection(...) function

Input : Population of individuals population[]

Output: The tournament, tournament[], which contains population index of

four individuals, which are sorted according to their fitness

C = ∅ ;1

for i = 1 to 4 do2

C = C ∪ {Random(x ∈ Z
+ | x ≤ |population[]| ∧ x /∈ C)} ;3

end4

for i = 1 to 4 do5

ci = x ∈ C | ∀cj ∈ C ∧ population[ci].f itness ≥ population[cj].f itness ;6

tournament[i] = ci ;7

C = C − {ci} ;8

end9

Page-Based Crossover

In Page-Based Linear GP, individuals consist of pages where each page contains an

equal number of instructions. Therefore, page-based crossover in Algorithm 9 selects

a page uniformly from each parent and exchanges their contents. In this crossover

scheme, the length of the children remains the same. This crossover scheme is em-

ployed to evolve buffer overflow attacks against misuse detectors in Chapter 7.

Single-Instruction Mutation

The single-instruction mutation is applied to a single individual. In this mutation

scheme, an instruction is selected with uniform probability and replaced with a dif-

ferent instruction from the instruction set, again chosen with uniform probability. The

single-instruction mutation scheme, which is detailed in Algorithm 10, is employed

mainly in evolving buffer overflow attacks against misuse detectors in Chapter 7 but

later is replaced with instruction-wise mutation in evolving mimicry attacks against

anomaly detectors in Chapter 8. The single-instruction mutation mutates only one

instruction per application, whereas the instruction-wise mutation, which is discussed

in Section 5.4.4, mutates multiple instructions per application, since each instruction

73

Algorithm 9: ApplyPageBasedXO(...) function

Input : A pair of individuals from which the children are created parents[],

Page size PgSize

Assumptions: ⇋ operator exists which swaps two genes

Output: Resulting children children[]

children[] = parents[] ;1

xo point1 = Random(x ∈ Z
+ | x < |parents[1]| ∧ x mod PgSize = 0) ;2

xo point2 = Random(x ∈ Z
+ | x < |parents[2]| ∧ x mod PgSize = 0) ;3

for loc = 1 to PgSize do4

// Exchange the pages

children[1].gene[xo point1 + loc] ⇋ children[2].gene[xo point2 + loc];5

end6

of the individual is tested for mutation. The utilization of instruction-wise muta-

tion is due mainly to the increased search space size when evolving mimicry attacks

against anomaly detectors, which necessitates a more effective mutation operator.

The discussion of search space sizes is made in Sections 7.2.4 and 8.2.4.

Algorithm 10: ApplyMutation(...), single-instruction mutation function
Input : Set of opcodes FunctionSet, set of operands TerminalSet, a pair of

individuals from which the children are created parents[]

Output: Resulting children children[]

children[] = parents[];1

IS = {i = (f, p1, p2) | f ∈ FunctionSet ∧ p1, p2 ∈ TerminalSet} ;2

for ind = 1 to |children[]| do3

loc = Random(x ∈ Z
+ | x ≤ |children[ind].gene[]|) ;4

children[ind].gene[loc] = Random(i ∈ IS) ;5

end6

74

Instruction Swap

The swap operator selects two instructions from the same individual with uniform

probability and interchanges their respective positions, thus providing the basis for

investigating different permutations of the same instruction. The instruction swap

operator, detailed in Algorithm 11, is employed both in evolving buffer overflow at-

tacks against misuse detectors in Chapter 7 and in evolving mimicry attacks against

anomaly detectors in Chapter 8.

Algorithm 11: ApplySwap(...) function

Input : A set of parents, upon which the swap is applied parents[]

Assumptions: ⇋ operator exists which swaps two genes

Output: Resulting children, children[]

children[] = parents[] ;1

for ind = 1 to |children[]| do2

instr1 = Random(x ∈ Z
+ | x ≤ |children[ind].gene[]|) ;3

instr2 = Random(x ∈ Z
+ | x ≤ |children[ind].gene[]| ∧ x 6= instr1) ;4

// Exchange the instructions

children[ind].gene[instr1] ⇋ children[ind].gene[instr2] ;5

end6

75

5.4 Linear Genetic Programming with Pareto Ranking

The linear GP framework discussed in this section differs from the GP framework

discussed in Section 5.3 in a number of ways.

Representation: The previous linear GP framework has a fixed length represen-

tation, whereas this GP framework supports variable length representation.

Specifically, in evolving buffer overflow attacks at the assembly level, the in-

dividual length is usually fairly small (tens of instructions as opposed to hun-

dreds). On the other hand, evolving mimicry attacks against anomaly detectors

involve individuals which can be very concise or very long. Assuming a variable

length representation provides GP with the freedom to establish which instruc-

tion count is the most appropriate by making use of a Pareto multi-objective

fitness evaluation. Thus, unlike the fixed length model in which the range of

instruction counts was established a priori, considerable variation might exist

in the instruction counts of the individuals.

Support for Multi-Objective Optimization: The fitness calculation in the pre-

vious GP framework in Section 5.3 is not particularly multi-objective. That is

to say, although there are steps which need to be completed for the attack to

succeed, the ultimate goal of the exploits is to deploy a system call (i.e. execve).

However, in evolving mimicry attacks against anomaly detectors, the individ-

uals aim to optimize multiple characteristics of a mimicry attack such as the

anomaly rates, delays and attack lengths. Therefore in the experiments which

involve evolving mimicry attacks against anomaly detectors (Chapter 8), the

linear GP detailed in Section 5.3 is extended to support a Pareto rank-based

multi-objective fitness function.

Search Operators: Given a variable length representation, new search operators are

introduced, namely cut and splice crossover and the instruction-wise mutation.

The cut and splice crossover operator allows the production of children which

can be shorter or longer than the parents. Furthermore, the instruction-wise

mutation provides a more effective means to introduce new genetic material to

the population.

76

5.4.1 Representation

Sharing the same representation scheme with Linear Genetic Programming in Section

5.3, the representation defines instructions as 4 bytes where 2 bytes are allocated for

the opcode and two operands are each allocated one byte. In other words, the first two

bytes of the instruction identifies the function to be used whereas the last two bytes

identify which terminal(s) the function uses. The individuals are variable length,

which implies that the children can be longer or shorter than their parents. However,

the genotype to phenotype mapping example provided in Section 5.3.1 still applies to

the GP framework detailed in this section.

Given that a mimicry attack can be expressed as a sequence of system calls, the

Genetic Programming detailed in this section shares similarities with GAs in the

sense that the individuals can be represented as a sequence of integers. In order to

identify the similarities between the GP detailed in this section and GAs, a distinc-

tion between GAs and GPs is necessary. The main difference lies in the mapping

of the genotype to phenotype in which GP aims to map the string of numbers (i.e.

genotypes) to a program, whereas GA retains the string of number representation.

Although the mimicry attacks which GP generates consist of instructions and param-

eters (i.e. system calls can be evolved with parameters), the fitness calculation, which

is carried out mainly by the target anomaly detector, is based upon the ordering of

the instructions. Therefore, although the mimicry attack generation methodology is

GP, it can be implemented as a GA without the loss of generality.

5.4.2 Training

The training loop is detailed in Algorithm 12, where Pareto ranking is employed

for multi-objective optimization. At each iteration, the Pareto Ranking function in

Algorithm 14 calculates the rank of each individual by using the Pareto dominance

concept (Algorithm 17), which is discussed in Section 5.4.3.

At each iteration, two parents are selected uniformly from the population. Two

children are created by applying cut and splice crossover, instruction-wise mutation

and swap, Algorithms 18, 19 and 11, respectively. It is important to note that,

77

compared with single instruction mutation, instruction-wise mutation tests each in-

struction for mutation, hence providing greater change in an individual.

Using a replacement scheme similar to Kumar et al. [57], the children are ap-

pended to the population (of size N) after the search operators, hence producing

N + 2 individuals. This scheme bears similarities to both generational and steady

state approaches. Similar to a steady state approach, both parents and the children

can take part in the next iteration. Furthermore, similar to the generational approach,

the children are compared against the entire population, although the replacement

does not alter the entire population. The extended population with N +2 individuals

is sorted according to the Pareto ranks using Algorithm 14 and the lowest ranked

two individuals are discarded from the population (Algorithm 15) hence restoring the

population size to N . This replacement scheme is elitist in nature since it does not

cause the loss of non-dominated solutions. In other words, at each training step, the

population either moves toward the Pareto front or remains the same. For the sake of

simplicity, fitness calculation in Algorithm 12 does not cover the fitness calculation,

which is detailed in Section 8.2.3.

Kumar et al. [57] employed rank frequency distribution functions to test for con-

vergence and early termination. The frequency distribution summarizes the number

of individuals for each rank. If the frequency distribution of the ranks remains un-

changed over a pre-defined number of iterations (five in the thesis experiments), the

population is considered converged and the training is terminated. Similarly, the GP

employed in the thesis experiments maintains a frequency density function of the

ranks by utilizing Algorithm 16.

Unlike other well known Pareto multi-objective models [14] [115] [18] [28], the

approach of Kumar et al. [57] does not make use of niche-based diversity metrics.

This is a considerable advantage under the GP context as most niching metaphors are

based upon the concept of a distance calculation (i.e., in terms of the original domain

input attributes). This might be a problem when evolving payloads for the buffer

overflow attacks because domain attributes and metrics for comparing such payloads

(i.e. a phenotypic comparison) such as ‘edit distance’ are notoriously difficult to

provide effective definitions for. Indeed, the niche-based diversity metric of GE in

78

Section 5.2.3 utilized such a scheme and assumed that it was sufficient to make a

multi-model assumption relative to the fitness landscape as opposed to the genotypic

representation space. However, in cases of evolving exploit code, such appropriate

measures are not available.

5.4.3 Fitness Function

Various methods exist for supporting the multi-objective fitness calculation. In the

most straightforward method, the objectives are combined into one fitness value by

assigning weight values to each objective. Although this approach is simple and easy

to implement, the resulting fitness value is sensitive to changes in the weight values.

Other methodologies exist such as niching and fitness sharing [19] [68], which aim

to maintain a diversity in the population by penalizing individuals which produce

similar outcomes. The experiments on optimizing buffer overflow characteristics in

Chapter 6 employ both of these methods.

Goldberg [35] introduced the Pareto Ranking concept with the objective of pro-

ducing a scalar fitness from a vector of objectives without combining them in an

ad-hoc fashion. The Pareto optimality can be defined as follows: in a minimization

problem with the objective vectors FA and FB for individuals A and B, A is said to

Pareto dominate B if and only if:

FA ≺ FB ⇔ (∀m)(FA(m) ≤ FB(m)) ∧ (∃m)((FA(m) < FB(m))) (5.6)

Equation 5.6 implies that A Pareto dominates B, if and only if A is at least

as good as B on all objectives and it is better than B on at least one objective.

The Pareto dominance function is defined in Algorithm 17 [67]. Non-dominated

individuals form the Pareto front where each individual on the front is optimal with

respect to one of the objectives. The Pareto ranking has two advantages. First, it

allows the GP to maintain solutions which can optimize different objectives (i.e. in

case of a buffer overflow attack, minimizing the anomaly rate and minimizing the

delay can be considered as different objectives). Second, it allows GP to maintain

some diversity by decreasing the rank of the repeated individuals.

The GP framework discussed in this section employs the Pareto ranking algo-

rithm [57], which was originally proposed by Fonseca et al. [28]. In Pareto ranking,

79

Algorithm 12: Main GP training loop with Pareto ranking
Input : Number of iterations NumIterations, probability of crossover Pxo,

probability of mutation Pmut, probability of swap Pswap, number of

iterations before the population is considered converged,

TerminateCount

Output: Population of individuals population[]

terminate = 0;1

PopSizeorig = |population[]|;2

ParetoRank(population[]) ;3

for iter = 1 to NumIterations ∧(terminate < TerminateCount) do4

parents[1] = SelectParent(population[]);5

parents[2] = SelectParent(population[] - {parents[1]});6

if TestProb(Pxo) then7

children[] = ApplyXO(parents[]);8

end9

children[] = ApplyInstrwiseMutation(children[], Pmut);10

if TestProb(Pswap) then11

children[] = ApplySwap(children[]);12

end13

population[PopSizeorig + 1] = children[1] ;14

population[PopSizeorig + 2] = children[2] ;15

ParetoRank(population[]) ;16

Replace(population[]);17

new rank fdf = CalculateRankFDF(population[]) ;18

if new rank fdf = rank fdf then19

terminate++ ;20

else21

terminate = 0 ;22

end23

rank fdf = new rank fdf ;24

end25

80

Algorithm 13: SelectParent(...) function

Input : Population of individuals population[]

Output: An individual selected in inverse proportion to its Pareto rank

sum = 0;1

for ind = 1 to |population[]| do2

sum = sum + 1
population[ind].rank

;3

end4

r = Random(x ∈ R
+ | x ≤ sum) ;5

sum2 = 0 ;6

for i = 1 to |population[]| do7

sum2 = sum2 + 1
population[ind].rank

;8

if r ≤ sum2 then9

return population[ind] ;10

end11

end12

Algorithm 14, the rank of the individuals is initialized with 1. For each individual,

the algorithm determines the number of individuals which the given individual dom-

inates. The rank of an individual is incremented by the number of individuals that

it dominates. This implies that the non-dominated individuals will have a rank of

1. In case of a tie between two individuals, the rank of the individual defined by

the inner loop in Algorithm 14 is incremented by one. Therefore lower rank values

correspond to better performing individuals. Non-dominated individuals with rank

1 form the Pareto-front of the population in which the solutions are non-dominated

and optimize at least one of the objectives.

5.4.4 Search Operators

GP with Pareto ranking employs cut and splice crossover, instruction-wise mutation

and swap as the search operators. The cut and splice operator in Algorithm 18

selects different crossover points on the parents, therefore the amount of exchange

may not be symmetric. Compared with the single instruction mutation operator, the

81

Algorithm 14: ParetoRank(...) function

Input : Population of individuals population[]

Output: Ranks of individuals in population[] are updated

T = ∅ ;1

for ind = 1 to |population[]| do2

population[ind].rank = 1 ;3

end4

for i = 1 to |population[]| do5

for j = 1 to |population[]| do6

r = ParetoDom(population[i], population[j]);7

if r = -1 then8

if i 6= j ∧ (i, j) /∈ T then9

T = T ∪ {(i, j)};10

population[j].rank++ ;11

end12

else13

population[i].rank = population[i].rank + r ;14

end15

end16

end17

82

Algorithm 15: Replace(...) function

Input : Population of individuals population[]

Assumptions: ⇋ operator exists which swaps two genes

Output: Removes the worst ranked two individuals and returns population[]

PopSizeorig = |population[]| − 2 ;1

// Move the worst ranked two individuals to the end for deletion

for i = 2 to 1 do2

wr = 1 ;3

wj = −1 ;4

for j = 1 to PopSizeorig + i do5

if population[j].rank ≥ wr then6

wr = population[j].rank ;7

wj = j ;8

end9

end10

population[wj] ⇋ population[PopSizeorig + i] ;11

end12

population[PopSizeorig + 2] = ∅;13

population[PopSizeorig + 1] = ∅;14

Algorithm 16: CalculateRankFDF(...) function

Input : Population of individuals population[]

Output: fdf [], which is a frequency function of the ranks

for i = 1 to |population[]| do1

fdf[i] = 0 ;2

end3

for i = 1 to |population[]| do4

ind rank = population[i].rank ;5

fdf[ind rank] = 1/ |population[]| ;6

end7

83

Algorithm 17: ParetoDom(...) function

Input : Two individuals, indA and indB with feature vectors indA.F [] and

indB.F [], where smaller values are more optimal

Output: Returns 1 if indA Pareto dominates indB, -1 if indA and indB are

indifferent and 0 if otherwise

for i = 1 to |indA.F []| do1

if indA.F [i] ≤ indB.F [i] then2

flag = flag + indA.F [i] < indB.F [i] ;3

else4

return 0 ;5

end6

end7

if flag > 0 then8

return 1 ;9

else10

return -1 ;11

end12

84

instruction-wise mutation operator in Algorithm 19 introduces more changes into the

population. Such a mutation scheme provides a more effective way to introduce new

genetic material to the population, which focuses on a problem with a more extensive

search space (Section 8.2.4) compared with the problem which the GP framework

in the previous work focuses (Section 7.2.4). The same swap operator which was

discussed in Section 5.3.4 is utilized. The greedy search operator in Algorithm 20 is a

‘hill climbing’ operator which aims to improve the best individual by identifying the

best single instruction change and is employed in a limited number of experiments

[45].

Cut and Splice Crossover

In cut and splice crossover, two different crossover points are selected uniformly from

each parent. This splits the parents into two fragments each. The first (second) child

combines the first fragment from the first (second) parent and the second fragment

from the second (first) parent. Since the amount of exchange may not be equal, the

children can have different lengths from their parents. The thesis experiments which

involve evolving mimicry attacks against anomaly detectors in Chapter 8 employ the

cut and splice crossover operator detailed in Algorithm 18.

Instruction-wise Mutation

The instruction-wise mutation operator tests each instruction independently for the

application of the mutation operator. Following a positive test, the instruction is

replaced with another instruction which is selected stochastically from the instruction

set. Compared with the single instruction mutation operator, it introduces more new

genetic material to the population. Consequently, its probability is generally much

lower than the probability of a single instruction crossover.

In the case of the instruction-wise mutation operator, a linear annealing schedule

is employed such that at the last tournament, the mutation probability is zero, de-

caying linearly as the tournament count increases. The basic motivation is to enable

the crossover operator to investigate different contexts of population material as the

tournaments advance.

85

Algorithm 18: ApplyXO(...) function

Input : A pair of individuals from which the children are created parents[]

Output: Resulting children children[]

// Note that the individuals are variable length

children[] = ∅ ;1

xo point1 = Random(x ∈ Z
+ | x ≤ |parents[1].gene[]|) ;2

xo point2 = Random(x ∈ Z
+ | x ≤ |parents[2].gene[]|) ;3

c1 available = 1;4

c2 available = 1;5

for loc = 1 to xo point1 do6

children[1].gene[c1 available] = parents[1].gene[loc];7

c1 available++ ;8

end9

for loc = 1 to xo point2 do10

children[2].gene[c2 available] = parents[2].gene[loc];11

c2 available++ ;12

end13

for loc = xo point1 + 1 to |parents[1].gene[]| do14

children[2].gene[c2 available] = parents[1].gene[loc];15

c2 available++ ;16

end17

for loc = xo point2 + 1 to |parents[2].gene[]| do18

children[1].gene[c1 available] = parents[2].gene[loc];19

c1 available++ ;20

end21

86

The instruction-wise mutation operator detailed in Algorithm 19 is employed in

evolving mimicry attacks against anomaly detectors in Chapter 8.

Algorithm 19: ApplyInstrwiseMutation(...), instruction-wise mutation func-

tion

Input : Set of opcodes FunctionSet, set of operands TerminalSet, a pair of

individuals from which the children are created parents[],

probability of mutation Pmut

Output: Resulting children children[]

children[] = parents[] ;1

IS = {i = (f, p1, p2) | f ∈ FunctionSet ∧ p1, p2 ∈ TerminalSet} ;2

for ind = 1 to |children[]| do3

for loc = 1 to |children[ind].gene[]| do4

if TestProb(Pmut) then5

children[ind].gene[loc] = Random(i ∈ IS) ;6

end7

end8

end9

Instruction Swap

The instruction swap operator detailed in Section 5.3.4 is also employed in this train-

ing configuration.

Greedy Search

The greedy search operator selects the current best performing individual and searches

for the best single instruction change, which is the single instruction change which

produces the best fitness value. This implies that all possible instructions at each

instruction location on the individual are evaluated. Given the computational cost of

accessing such an operator, it is only applied every 1000 tournaments, on a limited

number of experiments [45].

87

Algorithm 20: GreedySearch(...), Greedy search function
Input : An individual to be mutated, individual, set of opcodes FunctionSet

and set of operands TerminalSet

Output: Returns the mutated individual, individual

IS = {i = (f, p1, p2) | f ∈ FunctionSet ∧ p1, p2 ∈ TerminalSet} ;1

temp = individual;2

maxfit = individual.fitness;3

// Test all gene locations

for i = 1 to |individual.gene[]| do4

// Test all opcode / operand combinations

for j = 1 to |IS| do5

temp.gene[i] = j ∈ IS ;6

if temp.fitness > maxfit then7

maxi = i;8

maxj = j;9

maxfit = temp.fitness;10

end11

end12

end13

// Apply the single gene mutation that produces the best fitness

individual.gene[maxi] = maxj ;14

Chapter 6

Optimizing Buffer Overflow Characteristics

As discussed in Chapter 2, since a block of NoOP instructions presents a detectable

pattern, the first objective of the attacker is to optimize the length of the NoOP sled

and the accuracy of the approximated return address. From an attacker’s perspec-

tive, a shorter NoOP sled is desired but this implies that the approximated return

address should be more accurate. The methodology described in this chapter aims to

automate the identification of suitable malicious buffer overflow characteristics using

Grammatical Evolution. The methodology proposed in this chapter focuses on evad-

ing misuse detectors namely, the Snort detector, by altering characteristics such as

the NoOP sled length and the desired return addresses. Furthermore, it represents

the first step towards improving the payload of the stack overflow attack, namely the

shellcode.

6.1 Background and Motivation

In this thesis, the principal objective of evolving buffer overflow attacks is to assess the

detectors against buffer overflow vulnerabilities. Recent work on vulnerability testing

has indicated that intrusion detection systems can detect a particular instance of an

attack, but are unable to ‘generalize’ to the class of overflow attacks [13] [22] [23]

[66] [88] [96] [102] [105]. The main objective of employing GE is to automate the

generation of successful malicious buffers. This set of experiments can be considered

as part of a wider framework in which the stack buffer overflow attacks are generated

automatically for the purpose of discovering the blind spots and weaknesses in intru-

sion detection systems. Thus, in the wider framework, evolving the shellcode at the

assembly and shellcode levels using Genetic Programming is covered in Chapters 7

and 8, respectively.

In this chapter, Grammatical Evolution is employed to discover the NoOP sled

88

89

and return address characteristics of the malicious buffer with the objective of iden-

tifying a wide range of successful buffer overflows. The population represents a set

of candidate exploits with different NoOP and return address characteristics. The

approach discussed in this chapter requires the memory address of the stack and

feedback regarding the success of the attack, both of which can be obtained by a

debugger or an executable code analyser. Evolution is guided by the definition of a

suitably informative fitness function which determines the ‘quality’ of the malicious

buffer. Attack diversity is maintained by modifying the fitness function to incorporate

fitness sharing, which discounts fitness based upon the degree of similarity between

individuals. The fitness function also represents the principal mechanism for incor-

porating a priori knowledge. In this case, minimizing the NoOP sled length is known

to improve the chances of avoiding detection. Incorporating this bias into the fitness

function and testing the resulting exploits against a misuse detection system, Snort,

indicated that the resulting attacks were more effective at avoiding detection.

6.2 Methodology

The methodology aims to evolve programs which can craft buffer overflows to auto-

mate vulnerability testing against misuse-based detectors. To do so, Grammatical

Evolution is employed to discover the characteristics of a successful buffer overflow.

Moreover, fitness sharing is utilized to encourage the evolution of different malicious

buffers. For the purposes of this work, a simple and generic vulnerable application

was developed, which performs a data copy without checking the internal buffer size.

The malicious buffers which GE generated were deployed against the Snort detector

to assess the detection rate (Section 6.2.3).

6.2.1 Grammatical Evolution

The details of Grammatical Evolution are discussed in Section 5.2. A simple C

grammar was developed for generating programs which assemble the malicious buffer

exploits, Figure 6.1. The resulting C program is an individual which approximates the

desired return address and assembles the malicious buffer exploit. Each individual of

the population represents a buffer overflow attack. The grammar allows an individual

90

to determine the offset, the size of the NoOP sled, and the number of desired return

addresses; hence GE alters these parameters to generate malicious buffers with differ-

ent characteristics. The malicious buffer contains a NoOP sled, a 46-byte shellcode

which spawns a UNIX shell, and back-to-back desired return addresses. The first set

of experiments with a basic GE (detailed in Section 6.3) showed that the population

converges to one type of solution. In the second and the third sets of experiments in

this chapter, niching based upon fitness sharing [19] [68] was used to encourage pop-

ulation diversity, that is, multiple types of attack. Thus, a fit individual can obtain

a low ‘shared’ fitness, if many individuals find a similar solution. Therefore, in this

context, fitness sharing is implemented to pressure individuals into utilizing different

NoOP sled sizes and return addresses. The generic parameters employed in training

of the individuals are determined empirically and summarized in Table 6.1.

code : exp

exp : detn detb deto alloc offsetc prel1 loop1 loop2 prel3 loop3 post3

digit : 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

number : digit + digit * 10 + digit * 100 + digit * 1000

detn : nsize = number ;

detb : bsize = nsize + number ;

deto : offset = number ;

alloc : buffer = malloc (bsize);

offsetc: esp = sp();ret = esp - offset;

prel1 : ptr = buffer; addr_ptr = (long *) ptr;

loop1 : for (i = 0 ; i < bsize ; i = i + 4) { exp1 };

loop2 : for (i = 0 ; i < nsize ; i = i + 1) { exp2 };

prel3 : ptr = buffer + nsize;

loop3 : for (i = 0 ; i < strlen (shellcode) ; i = i + 1) { exp3 };

post3 : buffer[bsize - 1] = 0;

exp1 : *(addr_ptr++) = ret;

exp2 : buffer[i] = ’\\x90’;

exp3 : *(ptr++) = shellcode[i];

Figure 6.1: A simple C grammar for generating programs which assemble the mali-
cious buffer

91

Table 6.1: Grammatical Evolution training parameters

Parameter Setting

Number of individuals 200
Number of generations 500
Probability of mutation 0
Probability of crossover 0.9
Replacement Strategy Children replace the parents if their fitness is better
Number of niches 5
Training Time Approximately 7 hours
Number of runs 10

Fitness Function

The fitness function is used to express several characteristics which are related to

achieving the overall objective. That is to say, basing the fitness function upon a

binary criterion – such as whether the individual gains super-user status successfully

or not – would not provide a sufficiently informative function space for the efficient

evolution of exploits. In this work, six characteristics of a malicious buffer are utilized.

1. Existence of the shellcode (µshellcode): a binary flag declaring whether the

(root shell access) shellcode is inserted into the malicious buffer successfully.

Thus, even if the buffer overflow is successful, without the shellcode, the attack

cannot succeed.

2. Success of the attack (µsuccess): the reaction of the application, i.e. a binary

flag indicating whether the root shell was obtained.

3. NoOP sled score: based upon the ratio of NoOP instructions to the overall

size of the NoOP sled prior the shellcode. If the execution jumps into the NoOP

sled, any non-NoOP instruction in the NoOP sled can have undesirable effects

on the succeeding shellcode. The NoOP sled score is formulated as:

scoreNoOP = 1 − number of non − NoOP instructions

NoOP sled length
(6.1)

4. Back-to-back desired return address score: similar to the NoOP sled

score; it is based upon the ratio of correct desired return addresses to the total

92

number of 4-byte return addresses following the shellcode. If the stack pointer

is overwritten with a faulty desired return address, the execution will not jump

to the shellcode. The score can be calculated with:

scoreretError = 1 − number of faulty return addresses

number of return addresses
(6.2)

5. Desired return address accuracy: this is the difference between the de-

sired return address and the actual address of the variable. A small difference

indicates that the approximation is accurate. Accuracy is formulated as:

scoredist =
1

|addressactual − addressdesired| + 1
(6.3)

6. Score calculated on the NoOP sled size: a large block of NoOP instructions

can be detected easily by a misuse detector, thus minimizing the size of the

NoOP sled is considered to improve the chances of not being detected. This

is implemented in the third set of experiments. The score on the NoOP sled

length is expressed as:

scoreNoOPError =
1

1 + NoOP sled length
(6.4)

The last four characteristics are incorporated into the fitness function with their

respective weights. In the experiments discussed in this chapter, the weights are all

equal and detailed in Table 6.2.

Table 6.2: Weights of the four characteristics of a malicious buffer

Weight Value

Error on NOOP Sled (WNE) 20
Error on desired return addresses (WRE) 20
Desired return address accuracy (WDA) 20
NOOP sled size score (WNS) 20

The fitness function provides the basis for directing the search for solutions. In this

work, the view is taken that a hierarchy of objectives exists. Thus, if the malicious

buffer does not contain the shellcode (i.e. µshellcode = 0), the individual is assigned

a minimum fitness. If the attack is successful (i.e. µsuccess = 1), the individual is

93

assigned a fitness between 100 and 120 based upon the size of its NoOP sled. The

perfect individual should be successful with a small NoOP sled, or no NoOP sled at

all. If the attack is not successful, it is assigned a fitness based upon the error rate of

the NoOP sled, desired return addresses and the accuracy of the approximation. The

overall fitness function incorporating these properties (with NoOP sled minimization)

has the following form:

fitness = µshellcode ×
(

µsuccess × (100 + WNS × scoreNoOP)

+ (1 − µsuccess) ×
(

WNE × scoreNoOPError

+ WRE × scoreretError + WDA × scoredist

)

)

(6.5)

Fitness Sharing

As discussed in Section 5.2.3, fitness sharing [19] [68] from Genetic Algorithms is em-

ployed to encourage the population to provide multiple unique solutions. The fitness

of an individual is discounted in proportion to its similarity to others in the popu-

lation. Consequently, the definition of the similarity metric will affect the variations

observed in the attributes of the solutions. In this case, such a scheme is introduced

to encourage solutions with different NoOP sled lengths and the number of desired

return addresses. That is to say, given a successful attack, fitness sharing encourages

the identification of additional evasion attacks with different NoOP sled lengths and

the number of desired return addresses.

As the population evolves, the boundaries formed by the NoOP sled lengths and

the number of desired return addresses will also change. Since determining the bound-

aries requires a pass of the entire population, σ is calculated every 10 generations in

the experiments discussed in this chapter. Fitness sharing is discussed in Section

5.2.3.

6.2.2 The Vulnerable Application

Similar to the example given by Erickson [25], a basic vulnerable application is de-

veloped, but this time using four 500-byte arrays. Erickson [25] employed only one

500-byte array whereas in this case, the preliminary experiments with the application

94

Erickson provided indicated that the NoOP sled is frequently too small to raise any

alarms (detailed in Section 6.3). The vulnerable program shown in Figure 6.2 has se-

tuid (set user ID upon execution) bit-enabled and runs with root privileges. It copies

the first command line argument to the fourth array without checking the size. This

means a successful attack should deploy a malicious buffer which is long enough to

overwrite the return address after exceeding 2000 bytes.

int main(int argc, char *argv[])

{

char buffer1[500];

char buffer2[500];

char buffer3[500];

char buffer4[500];

printf("Vulnerable : Variable at Addr : 0x%x\n", buffer4);

strcpy(buffer4, argv[1]);

return 0;

}

Figure 6.2: The vulnerable application which was developed for the experiments

6.2.3 The Detector

After the initial experiments, the aforementioned bias toward a minimal NoOP sled

was utilized to improve the chances of avoiding detection. To validate the enhance-

ment, the attacks were deployed against a misuse detection system, Snort [87], to

observe the detection (or lack of detection) of the malicious buffers. Snort is one

of the prevalent lightweight IDSs which attempt to balance (detection) performance,

flexibility and simplicity. It represents a widely used open-source intrusion detection

system which is able to detect various attacks and probes including instances of buffer

overflows, denial of service attacks and stealth port scans [87]. Snort 2.3.2 (build 12)

was installed and patched with the latest signatures (March 9, 2005) from the Snort

web site [107]. Since the main interest of the experiments in this chapter is in the

detection of shellcode attacks, all signatures were disabled except shellcode signa-

tures. There are 21 shellcode signatures, which detect different encodings of NoOP

instructions as well as other well-known instructions such as setting the user or group

95

ID to root. Other than the signature reduction, Snort was employed with its default

parameters.

For the IDS to detect an attack, the malicious buffer which the attack in question

deploys should be manifested in the event stream which the IDS monitors. Since

Snort is a network-based IDS, this means that the shellcode should appear in network

traffic. To make the shellcode apparent in the Snort event stream (i.e. the network

traffic), the vulnerable application is altered to print the contents of a variable. In

this scenario, the attacker connects to the target host via telnet and dispatches the

malicious buffer. It is assumed that the attacker has no way of suppressing the variable

dump, which triggers the Snort signatures. Given the use of encrypted protocols such

as SSH, it is important to note that the shellcode may not always appear in network

traffic. However, the objective in employing Snort is not to observe the detection

of the shellcode by a network-based IDS per se. Instead, the objective here is to

determine whether the attacks can evade a misuse detection system (especially since

the NoOP sled length is being minimized). Given that Snort is one of the widely used

misuse detection systems, it was natural to deploy it for this purpose. After each

malicious buffer is deployed, the Snort log files are checked to determine how many

alarms were raised. From the attacker’s point of view, between two successful attacks,

the one which raises fewer alarms is favoured. A similar evaluation methodology was

employed to test the detection capabilities of IDSs on service vulnerability attacks in

Vigna et al. [102] against Snort and ISS RealSecure.

6.2.4 Discussion of the Search Space Size

The GE grammar detailed in Figure 6.1 determines the boundaries of the NoOP

length, the length of the malicious buffer and the offset which is employed to calculate

the approximated return addresses. Although each individual is a C program, the

outcome of the individuals can be expressed in terms of the above-mentioned three

characteristics. This implies that the search space size depends upon the number of

values which the NoOP length, the length of the malicious buffer and the offset can

take.

Let n be the number of values which the NoOP length can take, m be the number

96

of values which the malicious buffer length can take and r be the number of values

which the offset can take. Therefore, the search space size is determined by the

number of variations in characteristics (n, m, r) which describe the malicious buffer.

Given that each characteristic is determined independent of the others, the total

number of variations in (n, m, r) is calculated as m × n × r.

The integer definition in grammar in Figure 6.1 allows n, m and r to vary between

0 and 9999, therefore each can have 10000 different values. Consequently, the size of

the search space (i.e. the total number of candidate solutions), given the grammar in

Figure 6.1 is 104 × 104 × 104 = 1012.

6.3 Results

In the initial set of experiments, fitness sharing was not utilized. The second set of

experiments utilizes fitness sharing, whereas the third set of experiments incorporates

the bias for encouraging smaller NoOP sleds.

The results are expressed in terms of the fitness of the individuals (attacks) and

the number of alerts which Snort generated when they were executed. Moreover,

identifying whether a subset of attack properties is more correlated with evolving

successful buffer overflow attacks than others is of interest. To do so, three character-

istics of a malicious buffer were observed: the NoOP sled size, the number of desired

return addresses, and an assessment of the buffer overflow. For the latter, four types

of buffer overflow are considered.

• Invalid Buffer: the malicious buffer does not contain the shellcode, hence it

has zero chance of success.

• Valid Buffer: the buffer has the NoOP sled, shellcode and desired return

addresses present.

• Viable: in addition to being valid, the buffer deploys successfully, obtaining a

root shell.

• Undetectable: in addition to being viable, Snort raises no alarms during its

execution.

97

Table 6.3 details the assessment of buffer overflows for different experiments. In

all three experiments, the C grammar which builds the programs which assemble

malicious buffers ensures that the majority of the population is at least valid. Al-

though niching reduces the number of viable buffers, it also encourages diversity in

the population, which will be discussed later in this section.

Table 6.3: Malicious buffer types and counts for three experiments

No Niching Niching Niching and NoOP min

Invalid 2 6 2
Valid 0 118 111
Viable 146 54 57
Undetectable 52 22 30

Figures 6.3, 6.4 and 6.5 summarize the population from the three experiments

with the NoOP sled size and the number of desired return addresses plotted with

fitness. As mentioned above, the vulnerable variable is approximately 2000 bytes

away from the return address (i.e. the EIP value stored on the stack). In Figure

6.3, experiments with the basic GE provides attacks which resulted in a range of

return addresses (between 5000 and 10000). The introduction of the sharing function

in Figure 6.4 increased the diversity of all three parameters: fitness, NoOP size,

and return address. This indicates that the attacks learn to overwrite the EIP with

an approximated return address. In the third set of experiments, Figure 6.5, two

attacks stand out from the rest of the population with a fitness value of 110. These

attacks can deploy successfully while using a single NoOP instruction, making them

very difficult to detect using signatures targeting the NoOP code. Moreover, this is

achieved without compromising the success of the attack itself.

98

0

500

1000

1500

2000

0

2000

4000

6000

8000
0

10

20

30

40

50

60

70

80

90

100

NoOP Size

No Niching

RET Size

F
itn

es
s

Figure 6.3: Fitness, NoOP sled size and the desired return address size of the popu-
lation in the last generation in the experiments without niching

99

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

10000
0

10

20

30

40

50

60

70

80

90

100

NoOP Size

Niching

RET Size

F
itn

es
s

Figure 6.4: Fitness, NoOP sled size and the desired return address size of the popu-
lation in the last generation in the experiments with niching

100

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

10000
0

20

40

60

80

100

120

NoOP Size

Niching & NoOP Min

RET Size

F
itn

es
s

Figure 6.5: Fitness, NoOP sled size and the desired return address size of the popu-
lation in the last generation in the experiments with niching and NoOP minimization

101

Figures 6.6, 6.7 and 6.8 show the NoOP sled size and the accuracy of the desired

return address for the three experiments. In all three experiments, the NoOP sled size

has a linear relation with the accuracy of the desired return address. In other words,

as the accuracy improves (i.e. distance gets smaller), the NoOP sled size becomes

smaller. Moreover in the case of successful attacks (i.e. attacks with fitness values of

100 or above), it was observed that the NoOP sled size was always kept below 2000

bytes.

0

500

1000

1500

2000 0

500

1000

1500

2000

0

10

20

30

40

50

60

70

80

90

100

Distance

No Niching

NoOP Size

F
itn

es
s

Figure 6.6: Fitness, NoOP sled size and the accuracy of the desired return address of
the population in the last generation in the experiments without niching

102

0

2000

4000

6000

8000

10000 0

0.5

1

1.5

2

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Distance

Niching

NoOP Size

F
itn

es
s

Figure 6.7: Fitness, NoOP sled size and the accuracy of the desired return address of
the population in the last generation in the experiments with niching

103

0

2000

4000

6000

8000

10000 0

0.5

1

1.5

2

x 10
4

0

20

40

60

80

100

120

Distance

Niching & NoOP Min

NoOP Size

F
itn

es
s

Figure 6.8: Fitness, NoOP sled size and the accuracy of the desired return address
of the population in the last generation in the experiments with niching and NoOP
minimization

104

Figure 6.9 details the mean fitness of the population over 500 generations. In

all three experiments, populations converged to a solution after approximately 100

generations. In the niching experiments, the mean fitness of the population is lower

than the mean fitness of the experiments without niching because attacks which

generate valid buffers while maintaining diversity have a shared fitness comparable to

the shared fitness of the attacks which generate viable buffers with similar parameters.

Figure 6.9: Mean raw fitness of the population over 500 generations

Figure 6.10 shows the change of the NoOP sled length over generations. Figure

6.10 demonstrates that the population converges after 100 generations. In the ex-

periments without NoOP minimization, after a few hundred generations, the mean

NoOP sled length stops decreasing; whereas in the NoOP minimization experiments

the fitness function continues to minimize NoOP sled length even if the buffer overflow

deploys successfully.

105

Figure 6.10: Mean NoOP size for viable and undetected attacks over 500 generations

106

In Figures 6.11, 6.12 and 6.13, buffer overflows are plotted with NoOP sled sizes,

the number of alerts and fitness. Since the population without niching in Figure

6.11 converged with less diversity, the number of alerts was 0, 1 or 2. In the case of

experiments which employed niching (Figures 6.12 and 6.13), the alert count ranged

between 0 and 10 (greater diversity in NoOP sled length). Signature analysis showed

that the Snort NoOP signature (Figure 6.14), which monitors the existence of large

blocks of 0x90, triggered all alerts.

0

500

1000

1500

2000

0

0.5

1

1.5

2
0

10

20

30

40

50

60

70

80

90

100

NoOP Size

No Niching

Alert Count

F
itn

es
s

Figure 6.11: Fitness, NoOP size and alert counts of the population in the last gener-
ation in the experiments without niching

107

0

2000

4000

6000

8000

10000

0

2

4

6

8
0

10

20

30

40

50

60

70

80

90

100

NoOP Size

Niching

Alert Count

F
itn

es
s

Figure 6.12: Fitness, NoOP size and alert counts of the population in the last gener-
ation in the experiments with niching

108

0

2000

4000

6000

8000

10000

0

2

4

6

8
0

20

40

60

80

100

120

NoOP Size

Niching & NoOP Min

Alert Count

F
itn

es
s

Figure 6.13: Fitness, NoOP size and alert counts of the population in the last gener-
ation in the experiments with niching and NoOP minimization

alert ip $EXTERNAL NET $SHELLCODE PORTS -> $HOME NET any

(msg:"SHELLCODE x86 NOOP"; content:"|90 90 90 90 90 90 90

90 90 90 90 90 90 90|"; depth:128; reference:arachnids, 181;

classtype:shellcode-detect; sid:648; rev:7;)

Figure 6.14: The Snort signature for detecting x86 NoOP sleds

109

Figure 6.15 details the average alert count for viable attacks. Table 6.3 shows

that basic GE managed to produce the most undetectable attacks. However, it is

also apparent that in terms of the average alert count of the population, niching

with NoOP minimization produces the least number of alerts. Moreover niching with

NoOP minimization results in two attacks with only one NoOP instruction each,

effectively undetectable.

Figure 6.15: Average alert count for viable and undetectable attacks for the three
sets of experiments

110

6.4 Discussion of Results

Grammatical Evolution was employed to evolve C programs to perform three tasks:

1. approximating the address of the vulnerable variable;

2. determining the length of the NoOP sled and the number of desired return

addresses;

3. assembling the malicious buffer in the light of the characteristics established

by the first two tasks (as indicated before, between two attacks which deploy

successfully, the one which raises fewer alarms is preferred).

Hence, every 100 generations, the population was tested against Snort to determine

the detection (or lack of detection) of the attacks. Since the only signature triggered

during the deployment of attacks was the NoOP detection signature, Figure 6.14,

results indicate that Snort employs signatures based solely upon the NoOP sled size

to detect the buffer overflow attacks generated in the three experiments.

Three sets of experiments were performed, namely, (i) basic GE, (ii) GE with

niching, which encourages a population to maintain diversity, and (iii) GE with nich-

ing and NoOP minimization since longer NoOP sleds are detected easily. Although

all three experiments produced comparable results, basic GE produces the best mean

fitness and the most viable attacks. On the other hand niching produces programs

which can craft a malicious buffer with different NoOP sled sizes and the number of

desired return addresses. Furthermore, NoOP minimization produces smaller mean

NoOP sled lengths and fewer alerts per population, which is desirable from an at-

tacker’s point of view. Results also show that in order for an attack to be successful,

the return address (EIP) should be overwritten with an accurate desired return ad-

dress which directs the execution to a point in the NoOP sled or the first instruction

of the shellcode. NoOP sled length decreases as the accuracy of the desired return

address increases.

In summary, the results indicate that GE can automate the optimization of NoOP

sled length and return address accuracy. As well, GE can bypass the Snort signature

which monitors the existence of long sequences of NoOP instructions.

Chapter 7

Evolving Exploits at Assembly Level

Chapter 6 investigated the optimization of the NoOP and return address components

of buffer overflow attacks in order to evade misuse detectors such as Snort. Another

important aspect of buffer overflow attacks is the payload (i.e. the shellcode) design,

where the attacker aims to evade detection by modifying the payload so that, while

the payload performs the attacker’s goals, it does not trigger any signatures (of a

misuse detector) nor deviate from normal behaviour (as defined in the database of the

anomaly detector). The methodology proposed in this chapter investigates the design

of the payload at the assembly language level using Linear Genetic Programming to

evade misuse detectors. The principal objective is to obfuscate the attack in such

a way that the misuse detectors (namely, Snort) cannot identify the true intent of

the code. Altering the payload at the system call level in order to evade anomaly

detectors is discussed in Chapter 8.

7.1 Background and Motivation

As discussed in Chapters 2 and 6, misuse detectors usually contain signatures which

describe the distinguishing characteristics of the shellcode such as the existence of

0x90 bytes, and system call parameters such as ‘/bin/sh’. Although the encryption

of the shellcode [22] renders it undetectable, Payer et al. [79] established that it

is possible to identify the characteristics of the decryption engine which need to

accompany the encrypted shellcode.

The methodology discussed in this chapter focuses on evolving the payload at

the assembly language level using Linear Genetic Programming. Employing a Linear

Genetic Programming-based methodology has the following advantages:

• The code bloat property of Genetic Programming provides a mechanism for

111

112

hiding the true intent of the code. Furthermore, GP solutions have been ob-

served to have functionality distributed across the length of the individual.

Given that misuse detection is sensitive to changes, padding attack code with

non-operational but syntactically correct instructions and changing the order-

ing of attack instructions helps to hide the payload from misuse detectors which

investigate only the sequence of bytes.

• Given the fitness function which describes the goals of the core attack, GP can

discover different ways to attain the goals, hence mimicking the core attack.

This makes it difficult for the misuse detector to detect the variant attack.

Previous work [102] has demonstrated the use of random modifications to a ‘core’

attack with the objective of highlighting weaknesses in standard signature-based de-

tectors. Updates to a detector based upon an immune system using a Genetic Algo-

rithm (GA) as the ‘attacker’ have also been proposed [23]. In this case, however, no

attack as such is built (the problem simplifies to function optimization). A GA has

been proposed as well for acting as an attack agent in an artificial ‘server-user-hacker’

environment. In this case the GA is used to construct hacker behaviour from a pre-

defined set of attack scripts [9]. As a consequence, there is no attempt to obfuscate

the true intent of the intended behaviour, or to discover alternative methodologies for

achieving the same objective. Finally, previous work [48] and Chapter 6 have demon-

strated that Evolutionary Computation (GE in particular) can be used to establish

the composition of buffer overflow attacks comprising a predefined exploit, NoOP sled

and return address. The result has been a set of attacks capable of defeating Snort,

a widely used signature-based intrusion detection system.

7.2 Methodology

The principal objective of the methodology is to evolve the shellcode at the assembly

language level. To do so, Linear Genetic Programming is employed to generate shell-

codes, which spawn a UNIX shell. A fitness function defines the goals for deploying

an ‘execve’ system call. In order to prevent the evolved attacks from crashing the

host where the training takes place, a runtime environment is developed which allows

113

the safe execution of the shellcode and evaluates the fitness of the attack without

altering the state of the actual system. The resulting attacks were deployed against

the Snort intrusion detection system to evaluate their detection rate.

7.2.1 Fitness Function

Categorically, the attack which is evolved is an ‘execve’ attack. Execve is a system call

which executes a program where the program takes the form of an argument (UNIX

shell ‘/bin/sh’ in this case). In standard C format, UNIX defines ‘execve’ as, int

execve(const char *path, char *const argv[], char *const envp[]).

The first parameter of the execve is the command name (i.e. the program to be

executed); the second parameter contains pointers to strings which will be given to

the program as arguments; the third parameter contains pointers to environmental

variables which are also stored as strings. A minimalist call to the ‘execve’ function

using a C program, which spawns a UNIX shell, is shown in Figure 7.1.

int main()

{

char *command = "/bin/sh";

char *args[2];

args[0] = command;

args[1] = 0;

execve(command, args, 0);

}

Figure 7.1: Calling the execve system call from a C program

The minimal requirements for executing an ‘execve’ system call for spawning a

UNIX shell from a shellcode is detailed as follows:

1. register EAX contains 0x0B i.e., the system call number for ‘execve’;

2. register EBX points to ‘/bin/sh0’ on the stack;

3. register ECX points to the argument array in the stack;

4. register EDX contains NULL;

5. interrupt 0x80 is executed;

114

In order to spawn a UNIX shell prompt, ‘execve’ requires that the command

pointer should be in the EBX register, the pointer to ‘args’ should be in the ECX

register and the pointer to the third argument (which, in this case, is the NULL

pointer) should be in the EDX register. Moreover, the program name ‘/bin/sh’

should be pushed to stack. To achieve these goals, 11 assembly instructions are

needed. After 10 instructions are executed (the 11th is the interrupt which transfers

control to the execve system call), registers EAX, EBX, ECX and EDX should be

configured correctly and the stack should contain the program name to be executed

(i.e. ‘/bin/sh’). Given the state of the stack and registers after the 10th instruc-

tion, if the values are not set correctly, greedy replacement is used to determine how

many instructions are needed to correct it. For example, if ‘/bin/sh’ has not been

pushed to the stack, 3 instructions are sufficient to achieve this goal. Another impor-

tant point is that if the task has been half-accomplished, viable instructions should

be determined. Using this principle, the fitness function summarized in Figure 7.2

returns a maximum fitness of 10 if all conditions are satisfied, otherwise it subtracts

the number of instructions needed to correct the program, relative to the minimal

set of sub-goals. The basic fitness function therefore takes the form of a hierarchical

fitness function in which sub-goals (b) to (e) need to be completed before the inter-

rupt. However, depending upon the composition of the language used to evolve the

attacks, there are multiple programs producing the required (buffer overflow) attack

behaviour.

7.2.2 Runtime Environment and Fitness Evaluation

In order to obtain the behavioural fitness requirements defined in Figure 7.2, in-

dividuals representing an exploit are executed. Although it is possible to run the

attack on a ‘real’ environment, this approach suffers from the disadvantage that an

attack can potentially crash the environment, terminating the training process as a

whole. Therefore, execution of the program is accomplished using a virtual runtime

environment, which simulates the execution of assembly programs on the 32-bit Intel

Architecture [39].

115

(a) Fitness = 10;

(b) IF stack does not contain ‘/bin/sh0’, THEN subtract number of instructions
necessary to do so from Fitness (1 to 3);

(c) IF register EBX does not point to string from (b), THEN Fitness − = 1;

(d) IF register ECX does not point to argument array in stack, THEN subtract
number of instructions necessary to do so from Fitness (1 to 3);

(e) IF register EDX ! = NULL, THEN Fitness − = 1;

(f) IF an INT is not executed, THEN Fitness − = 1;

Figure 7.2: Basic fitness function for establishing correct behaviour for the ‘execve’
exploit

Utilizing symbolic execution for the analysis of malicious behaviour is quite estab-

lished in the literature. For example, Crandall et al. [16] employed symbolic execu-

tion to analyse and detect worm behaviour at the assembly language level. Similarly,

Wagner et al. [104] formulated the detection of buffer overflows as an integer range

analysis problem to identify overflows before the code is executed. Yang et al. [113]

utilized the symbolic execution of various file system functions to analyse malicious

disk images. More similar to the approach taken in this chapter, Christodorescu et

al. [13] employed a symbolic execution of computer viruses and worms at assembly

level to detect the obfuscated variants of the original malicious code. Similar to the

characterization of success in Figure 7.2, they defined a “malicious code automaton”

which describes the objectives of the original virus.

Although limited in functionality, the runtime environment employed in this chap-

ter is developed with sufficient functionality to execute an execve system call properly,

Figure 7.3. Limitations take the form of explicitly prohibiting accesses to, or mod-

ification of memory or the heap. The runtime environment, Figure 7.3, contains

simulated data structures such as:

1. General-purpose IA32 registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP,

EIP) which can be used in 32 or 16-bit modes. 8-bit mode is available on EAX,

EBX, ECX, and EDX;

2. A special purpose register for testing flag values;

116

3. An addressable stack.

Registers and the stack are also simulated, which is to say that the execution of

a program does not modify the actual stack and registers of the host machine. The

execution of each instruction is defined as a C function which modifies the simulated

data structures of the virtual machine. Instructions are implemented using the IA32

instruction definitions from the IA32 Developer’s Manuals [39]. Special attention

was given to flag modification in order to determine which execution branch to take

(e.g. the case of a control transfer instruction such as a JMP). When the interrupt

instruction is called, a snapshot of the virtual machine state is taken, from which the

fitness is calculated.

Figure 7.3: Virtual runtime environment for fitness evaluation

7.2.3 Linear GP

Individuals are represented using linear GP in which instructions are composed from

a 2-byte opcode and two operands (each 1-byte). In other words, all instructions

have the same number of bytes. Table 7.1 defines the instruction set architecture

and Table 7.2 defines the parameter types. IMM32 denotes the 32 bit immediate

values (immediate is the term used for constants). REG32 denotes the 32 bit general

purpose registers, EREG32 denotes the extended 32 bit registers and LREG8 denotes

the low 8 bit registers.

117

The training parameters, which are determined empirically, are detailed in Table

7.3. Individuals are defined using a fixed length format, thus all the individuals

are initialized with the same number of instructions. Selection takes the form of a

steady state tournament over 4 individuals. The children from the best performing

half of the tournament overwrite the individuals corresponding to the worst half of

the tournament, taking their place in the population. Search operators take three

forms: page-based crossover, instruction mutation, and instruction swap, Table 7.3.

Therefore, the crossover operator is constrained to exchanging an equal number of

instructions (a page) between two individuals. The mutation operator selects a single

instruction with uniform probability and replaces it with a different instruction from

the instruction set, Table 7.1. The swap operator selects two instructions from the

same individual with equal probability and interchanges their respective positions.

Table 7.1: Linear GP instruction set

Instruction Instruction Type Parameter 1 Parameter 2

INT Control Transfer 0x80 N/A
CDQ Data Transfer N/A N/A
PUSH IMM32 N/A
PUSH REG32 N/A
MOV EREG32 EREG32
MOV LREG8 0x0B
ADD Binary Arithmetic REG32 REG32
SUB REG32 REG32
INC REG32 N/A
DEC REG32 N/A
MUL REG32 N/A
DIV REG32 N/A
AND Logic REG32 REG32
OR REG32 REG32
XOR REG32 REG32
NOT REG32 N/A

118

Table 7.2: Parameter types

Parameter Type Options

IMM32 0x68732f2f (‘hs//’), 0x6e69622f (‘nib/’)
REG32 EAX, EBX, ECX, EDX
EREG32 REG32 + ESP
LREG8 AL, BL, CL, DL

Table 7.3: GP parameters

Parameter Setting

Crossover Page-based crossover with 0.9 probability
Mutation Uniform instruction-wide mutation with 0.5 probability
Swap Instruction swap within an individual with 0.5 probability
Selection Tournament of 4 individuals
Stop Criteria At the end of 50,000 tournaments.
Population 500 individuals with 10 pages and 3 instructions per page.
Replacement Children replace the worst half of the tournament.
Training Time Approximately 6 hours.
Number of runs 20

119

7.2.4 Discussion of the Search Space Size

In order to determine the search space size of the instruction set given in Table

7.1, a number of variations for each instruction should be determined. For example,

PUSH REG32 can be mapped to four different instructions (namely, PUSH EAX,

PUSH EBX, PUSH ECX and PUSH EDX) whereas PUSH IMM32 can be mapped

to two (namely, PUSH 0x68732f2f and PUSH 0x68732f2f). Given an instruction with

two parameters where each parameter can take 5 different values (e.g. the MOV

instruction), there exist 25 different variations for the instruction. An enumeration

of all possible instruction mappings in Table 7.4 reveals that the instruction set given

in Table 7.1 allows for 137 different variations.

Table 7.4: Number of instructions which the instruction set in Table 7.1 allows

Instruction Types Parameter 1
Count

Parameter 2
Count

Variation
Count

INT 0x80 1 1
CDQ 1
PUSH IMM32 2 2
PUSH REG32 4 4
MOV EREG32, EREG32 5 5 25
MOV LREG, 0x0B 4 1 4
ADD REG32, REG32 4 4 16
SUB REG32, REG32 4 4 16
INC REG32 4 4
DEC REG32 4 4
MUL REG32 4 4
DIV REG32 4 4
AND REG32, REG32 4 4 16
OR REG32, REG32 4 4 16
XOR REG32, REG32 4 4 16
NOT REG32 4 4

Total number of instruction variations allowed 137

Let n be a number of values that an instruction can take and l be the length of the

program. Given that each l instructions can take n different values, the number of

candidate programs, which defines the search space, can be calculated with nl. Since

120

the length of the individuals is fixed at 30, and each instruction can take 137 different

values, the search space size (i.e. the total number of candidate solutions) is 13730,

which is approximately 1064.

7.3 Results

In the preliminary experiments, GE was utilized to evolve attacks at the assembly lan-

guage level. However, GE proved very inefficient at manipulating register references

using the standard GE search operators. Therefore, the purpose of utilizing linearly-

structured GP is to avoid this problem. In the following, three sets of experiments

are described in which the instruction set is incrementally expanded, thus increasing

the search space, but providing for greater freedom in the resulting program content

(thus a wider range of behavioural properties). This case results in code which has

the capacity to intermix attack and obfuscation.

In all cases, the fitness function takes the form of Figure 7.2, augmented with an

additional term to measure the likelihood of an attack being executed. Specifically,

since all individuals have a fixed length of 30 instructions and it takes 11 instructions

to describe the attack, there are up to 19 instructions denoting introns with respect

to the malicious code. Within this context, introns, which are discussed under code

bloat in Chapter 5, are effective NoOP instructions which do not contribute directly

to achieving the goals of the attack. If the approximated return address was not ac-

curate enough to jump to the first instruction, jumping to an effective NoOP (intron)

region would allow an attack to deploy successfully. Therefore, from an attacker’s

perspective, it is more advantageous to place the attack instructions toward the end

of the shellcode. Due to inaccurate approximation of the return address, if execution

of a successful attack fails by jumping past a relevant instruction, the location of the

instruction is called the failure point. The probability of execution is defined as the

failure point divided by the number of all possible points; or a denominator of 19 in

this case. An attack with the failure point closer to the end is more desirable.

121

7.3.1 Minimal Instruction Set

The first experiment employs an instruction set composed from the minimum subset

of instructions necessary to build the malicious exploit alone (the first 6 instructions

of Table 7.1 plus the XOR instruction). This represents a minimal search space in

which the relevant instruction sequence, instruction arguments, and intron behaviour

are all expressed in terms of the 6 instructions known to describe the minimalist

exploit.

Without additional objective With additional objective

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Li
ke

lih
oo

d
of

 e
xe

cu
tio

n

Figure 7.4: Likelihood box plot of executing an attack with and without the additional
fitness objective

Figures 7.4 and 7.5 summarize the probability of executing a working exploit

and a number of unique individuals under the basic fitness function (baseline) and

basic fitness function with the additional objective of maximizing the probability of

executing a valid exploit. The vertical lines of the box plots in Figures 7.4 and 7.5

show the third quartile, median and first quartile. Whiskers extend from each end of

the box to the adjacent values in the data which are within 1.5 times the inter-quartile

range from each end of the box. Outliers, which are data points with values beyond

the ends of the whiskers, are displayed with the plus sign.

From Figure 7.4, it is apparent that including the additional objective doubles

122

Without additional objective With additional objective

440

445

450

455

460

465

470

475

480

U
ni

qu
e

in
di

vi
du

al
 c

ou
nt

Figure 7.5: Population diversity box plot with and without the additional fitness
objective

the likelihood of executing the exploit. A unique individual differs from all others

in the population by at least one or more instructions. Figure 7.5 indicates that the

population diversity is maintained throughout the generations, without incorporating

techniques such as fitness sharing (Section 5.2.3) to encourage diversity.

7.3.2 Extended Instruction Sets

Two additional experiments were conducted, each augmenting the base instruction

set as follows:

• the basic 6 instructions plus 6 arithmetic instructions and XOR, Table 7.1;

• the basic 6 instructions, plus 6 arithmetic, plus four logical instructions, Table

7.1.

The results were detailed in terms of the mean fitness, the number of hits (i.e.

the number of programs, which has fitness above or equal to 10), and the mean

probability of execution for the basic instruction set and the two increments, Figures

7.6, 7.7 and 7.8, respectively. All three figures indicate an improved characteristic

123

when arithmetic instructions are included in the instruction set. Thus, arithmetic

instructions were either helpful in attaining the objectives in different ways or they

were good introns. Although the introduction of logic instructions impairs the results

compared with the inclusion of arithmetic instructions, the results are still better

than the basic instruction set. Hence, extending the search space by adding new

instructions does not have a substantially negative impact on deploying successful

attacks.

Basic Basic and Arithmetic Basic, Arithmetic and Logic

6.5

7

7.5

8

8.5

9

M
ea

n
fit

ne
ss

Figure 7.6: Box plot of mean fitness averaged over 20 runs

Table 7.5 provides a comparison between an evolved attack and the core attack

from which the fitness function was developed. Exploit code is shown in bold whereas

the remaining instructions of the program act like introns. It is apparent that the

evolved attack discovered different ways to attain sub-goals (b), (d) and (e) in Figure

7.2. The evolved attack executes successfully and spawns a UNIX shell. Further-

more, the introns, which can also be considered as the obfuscation code segments, are

distributed over the entire exploit.

124

Basic Basic and Arithmetic Basic, Arithmetic and Logic

0

50

100

150

200

250

300

H
it

co
un

t

Figure 7.7: Box plot of hit count averaged over 20 runs

Basic Basic and Arithmetic Basic, Arithmetic and Logic

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Li
ke

lih
oo

d
of

 e
xe

cu
tio

n

Figure 7.8: Box plot of mean likelihood of exploit execution averaged over 20 runs

125

Table 7.5: Evolved attack compared with the core attack from which the fitness
function is developed

Evolved Program Core Attack Sub-goals Attained

PUSH 0x68732f2f
MUL EAX
PUSH EBX
MUL EDX
CDQ
CDQ
SUB EAX, EAX XOR EAX, EAX (e)
MUL EDX CDQ (e)
PUSH EDX
MOV CL, 0x0b
PUSH EDX
DEC ECX
DEC ECX
MOV EBX, ESP
PUSH 0x6e69622f
PUSH EDX PUSH EAX (b)
PUSH 0x68732f2f Same (b)
PUSH 0x6e69622f Same (b)
MOV EBX, ESP Same (c)
MOV ECX, EDX PUSH EAX (step 1) (d)
CDQ
MUL EDX
PUSH ECX PUSH EAX (step 2) (d)
PUSH EBX Same (d)
MOV ECX, ESP Same (d)
MOV AL, 0x0b Same (f)
INT 0x80 Same (f)
PUSH EDX
PUSH 0x6e69622f
MOV DL, 0x0b

126

7.4 Discussion of Results

Linear GP was employed as a ‘white-hat’ attacker with the objective of altering the

core attack to make it undetectable by signature-based intrusion detection systems.

Results show that the code bloat property of GP provides a suitable means for hiding

the actual attack by mixing exploit instructions with introns which have no effect

toward achieving the goals of the attack. Furthermore, evolved attacks discover dif-

ferent ways of attaining sub-goals associated with building buffer overflow attacks,

hence mimicking the core attack with different instructions. Consequently, it be-

comes harder for a signature-based detector to detect the resulting attack variant.

The experiments detailed in this chapter focused on formulating a suitable fitness

function and defining instruction sets. Results showed that employing an additional

‘likelihood’ objective increased the chances of deploying successful attacks by moving

the point of failure toward the end of the shellcode. Expanding the instruction set

provided additional intron behaviour and supported different avenues for achieving

the sub-goals associated with the core attack. In order to observe the detection of the

evolved attacks, successful attacks were tested against Snort, which is a widely-used

network-based intrusion detection system. Successful attacks were transmitted over

a network, where Snort was deployed, monitoring the network traffic. All of the 2110

successful attacks avoided detection by Snort.

In summary, results indicate that linear GP is a suitable method for evolving

payload at the assembly level. The resulting evasion attacks achieved the goals by

finding alternative assembly instructions which produced the same outcome. Fur-

thermore, the obfuscation of the shellcode made the attacks difficult to detect by a

misuse detector.

Chapter 8

Evolving Exploits at System Call Level

Misuse detectors such as Snort employ detection signatures to detect buffer overflow

attacks. The main idea behind this detection method is to create signatures which

describe crucial elements of the buffer overflow attack such as the NoOP sled and the

existence of certain shellcode parameters such as ‘/bin/sh’. In turn, the attackers

alter their attacks so that the aforementioned crucial elements in the resulting evasion

attacks differ from the signatures which aim to detect them. Consequently, detector

developers then aim to design new signatures which can detect variants of an attack.

Within this context, this thesis employed GE to optimize buffer overflow characteris-

tics in Chapter 6 and linear GP in Chapter 7 to evolve the shellcode at the assembly

language level. By contrast, this chapter focuses on evading anomaly detectors using

linear GP to evolve the shellcode at the system call level.

Anomaly detectors monitor applications in order to detect any unusual behaviour.

The main idea behind anomaly detection is that any deviation from normal behaviour

is an anomaly and hence should be investigated further to determine whether it is

an attack. Commonly, anomaly detectors monitor the system calls [30] [89] [27] [26]

[103] [72] [110] [91] [38] which an application makes since most of the crucial interac-

tions between the operating system kernel and the application are facilitated through

system calls. The most common shellcode design involves calling execve to spawn a

UNIX shell. Therefore, the attackers [105] [99] [96] [32] [56] [34] design their payload

so that, instead of calling execve shellcode, which creates a deviation in application

behaviour, they utilize a set of system calls which are likely to be utilized by the target

application during normal operation. The search for such an attack is also known as

a mimicry attack search and is the focus of this chapter. The objective of the ‘white-

hat’ attacker, in this case, is to test the anomaly detectors for any blind spots or

detection weaknesses. Furthermore, another important benefit of investigating such

127

128

‘white-hat’ attackers is that they can aid in designing detectors which are resilient to

such mimicry attacks. Detector parameterization is another benefit of the proposed

approach. Given that anomaly detection is sensitive to detector configurations [97]

[46], the parameters of the anomaly detectors should be configured carefully to pro-

vide an effective defense (i.e. high detection rates with low false alarm rates). To this

end, the proposed ‘white-hat’ attacker can be deployed against various configurations

of the same detector to identify the configuration which is most resistant to mimicry

attacks.

8.1 Background and Motivation

The previous work relevant to mimicry attack generation is discussed in Section 3.2,

whereas the relevant work on anomaly detection is discussed in Section 3.1.

The common trait in mimicry attack generation [105] [99] [96] [32] [56] [34] is

that the detectors were used as ‘white-box’ systems. This implies that knowledge

which is necessary to design such a system is expensive and the exhaustive search

requires a limited semantic coverage in order to minimize computational cost. In

particular, such research has for the most part concentrated on the Stide open source

host-based anomaly detector [30] or its improved versions [89] [27] [26] [103]. The

design of exploits then boils down to locating sequences of system calls which match

the contents of an anomaly detector’s normal behaviour database while reaching

the behavioural objectives of the original ‘core’ exploit successfully. A minimalist

configuration of the anomaly detector is utilized under the general observation that it

is easier to make a strong detector if the alphabet of permitted instructions is small.

Thus, any weakness detected under these conditions will be magnified when more

realistic configurations of the detector’s normal behavioural database are employed

(a larger alphabet of normal behaviour will result in even more opportunities for

defeating the detector). Such a problem was shown to be of a sufficiently focused

form for exhaustive search algorithms to solve the problem in seconds with solutions

returning the equivalent of a zero anomaly rate [105] [99] [96] [32] [56] [34]. This thesis

aims to establish that it is possible to generate successful attacks without internal

knowledge of the detector. Therefore, the feedback from the detector is limited to

129

the anomaly rate alone where this is readily provided to the user as part of normal

operation. Hence, no use is made of the internal data structures or algorithms specific

to a particular detector. The design of mimicry exploits now takes the form of a

search process in which the anomaly rate from the detector is used as the only guide

to the effectiveness of the exploit. In addition, such an approach has the potential for

extending the applicability of vulnerability testing to commodity detectors for which

access to source or binary recompilation and signature or behaviour databases is often

prohibited.

Furthermore, this thesis makes the observation that there are two stages to a buffer

overflow attack [46] [47]. The first stage is called the preamble, which are the actions

which the attacker needs to take to gain control of the application. For example, in

the ftpd attack [5] the attacker gains control of the application by utilizing a command

which causes the corruption of the memory space of the application. This allows the

attacker to direct the application to the attacker’s shellcode. After the execution is

directed to the attacker’s code, the attacker has full control. This stage is called the

exploit in which the attacker can alter the system calls which the payload executes in

order to evade detection. Although Wagner et al. [105] were aware of the preambles,

the previous work [105] [99] [96] [32] [56] [34] focused on the design of the exploit

alone and the results were reported on the anomaly rate of the exploit alone. The

results discussed in this chapter demonstrate that although such an emphasis results

in exploits with a zero percent anomaly rate, the anomaly rate of the attack (i.e.

preamble and exploit) produces anomaly rates above zero percent.

8.2 Methodology

In this case, the objective is to develop an automated process for building ‘white-hat’

attackers within a mimicry attack context. By ‘mimicry’ the availability of the ‘core’

attack is assumed where this establishes a series of behavioural objectives associated

with the exploit. Therefore, the goal of the automated ‘white-hat’ attacker will be

to establish as many specific attacks corresponding to the exploit associated with the

‘core’ attack. Candidate mimicry attacks will take the form of system call sequences

which can avoid detection or at least minimize the anomaly rate at the corresponding

130

detector. By ‘white-hat’ it is implied that the underlying objective is to use the attacks

to improve the design of the corresponding detectors via vulnerability/penetration

testing.

As discussed in Chapters 6 and 7, previous research has established the suitabil-

ity of the genetic programming (GP) machine learning paradigm as an appropriate

process for automating specific processes associated with the design of buffer overflow

attacks [48] [44]. In this chapter, the approach is extended to a general framework

for mimicry attack generation, based upon the evolution of system call sequences

rather than the generic parameters of an attack. The general motivations for using

GP within this context are discussed below.

1. Goal-Based Objectives. All machine learning algorithms require a method

for expressing the suitability of the current solution. Typically, this takes the

form of a distance metric (e.g. sum square error) evaluated over a set of training

exemplars. Such an approach implies that it is possible to define the behaviour

relative to a set of exemplars describing input and desired output behaviours.

This mode of operation has lead to the widespread use of machine learning

methods within the context of intrusion detectors. However, in the case of

mimicry attack generation, the goal is to discover programs consisting of sys-

tem calls which mimic the behaviour of a predefined ‘core’ (buffer overflow)

attack. Learning is therefore directed by information supplied following an in-

teraction with an environment. The environment in this case takes two forms,

the anomaly rate returned by the detector for the candidate attack (suggested

by GP in this case) and the degree to which the generic goals associated with

achieving the ‘core’ attack are reached. Such a mode of operation precludes the

vast majority of machine learning paradigms as they make explicit assumptions

regarding the relationship between representation (the components from which

a solution is built) and how the objective is specified [6]. Typical examples

include the smoothness constraint associated with neural networks or kernel

methods. Conversely, GP has no limitation on the formulation of objectives.

2. Representation. Given that the objective is to design mimicry attacks, it

follows that the representation utilized by the machine learning methodology

131

must take the form of a program (i.e. a sequence of system calls) which corre-

spond explicitly to the attack. This requirement precludes the use of any other

machine learning technique. For example, kernel and neural network models are

based upon an abstract connectionist representation, broadly applicable to data

driven classification, regression, and clustering problem domains. Decision tree

methods provide solutions which take the form of a set of partitioning rules. In

essence all these methods utilize a representation motivated by a bias to a data

driven model of learning.

3. Intron Code. Solutions from GP take the form of a program in a prede-

fined language. However, not all instructions comprising a solution contribute

necessarily to the underlying operation of the individual, where this artifact

is synonymous with the ‘introns’ of biological genomes. Such introns result

from the stochastic action of the search operators (crossover and mutation) and

might account for as much as 80% of the instructions in an individual. Typi-

cally, instructions corresponding to intron behaviour are removed post learning,

as they make no contribution to the (functional) operation of the individual.

In the context of this work, however, intron code aids the obfuscation of the

real intent of the code. Thus, although not contributing to the design of a valid

exploit, code corresponding to intron behaviour will aid the minimization of

detector anomaly rates.

Anomaly detectors which are utilized in the experiments detailed in this chapter

are discussed in Section 4.2. As discussed in Section 4.2, the traits which make

these detectors suitable are (1) they employ different detection methodologies while

monitoring system calls and (2) they provide a suitable detection feedback, in the

form of anomaly rates and delays, which can be utilized to guide the evolution of the

attacks. Vulnerable applications which are employed in the experiments described

in this chapter are detailed in Section 8.2.1. Section 8.2.2 details the GP framework

utilized for automating mimicry attack generation under a core buffer overflow attack.

The fitness calculation of the attacks is discussed in Section 8.2.3.

132

8.2.1 Vulnerable Applications

In the experiments detailed in this chapter, four Linux applications were employed,

namely traceroute, restore, ftpd, and samba, which have known and documented

vulnerabilities. These are also the vulnerable applications used in the mimicry attack

literature [105] [96] [99] [77].

All four vulnerabilities can be found on older Linux distributions, which were re-

leased before 2004. Given that new vulnerabilities are continuously being discovered,

these comparably older attacks are chosen mainly because the ground truth of these

vulnerabilities are well known. In other words, the descriptions of the vulnerabilities

were thoroughly discussed and numerous exploits were published.

As buffer overflow attacks get increasingly difficult to exploit (due to non-executable

stacks and stack overflow protection of the compilers such as gcc) the attackers change

their tactics and take advantage of the input validation attacks against server-side

vulnerabilities [95]. However, the proposed approach relates to a wider scope of at-

tacks, where the objective of the attacker is to inject a malicious code, which can

achieve attacker’s goals while remaining undetected. Although the vulnerable appli-

cations discussed in this thesis provide a foundation for developing an artificial arms

race between attackers and detectors, the proposed approach can also be generalized

to other types of attacks where the goal is to evolve the code to be injected accord-

ing to the specifications of the attacker, as defined by the fitness function and the

instruction set.

Discussion of ‘Normal Behaviour’

For each application, normal use cases, which represent the scenarios of legitimate

use, were developed. The normal use cases developed in this research are similar to

the use cases discussed in previous work [105] [96] [99] [77]. Moreover, this thesis

employs multiple use cases for each application to provide a more realistic normal

behaviour database for the detectors.

Compared to the normal use cases developed for this work, previous work [105]

[96] [99] [77] employed fewer normal use cases to train the anomaly detectors, under

the general observation that it is easier to make a strong detector if the alphabet of

133

permitted instructions is small. Thus, any weakness detected under these conditions

will be exasperated when more realistic configurations of the detector’s normal be-

havioural database are employed (a larger alphabet of normal behaviour will result

in even more opportunities for defeating the detector).

Utilizing multiple normal use case scenarios aims to investigate how the anomaly

rates change when different training sets are employed as detailed in Section 8.4

and Appendix A. Moreover, utilizing multiple use cases does not aim to create an

exhaustive list of all possible normal use cases. Compared to the superset of all

possible system call sequences that an application can make, multiple use cases still

represent a small subset.

Traceroute and restore vulnerabilities can be exploited locally whereas ftpd and

samba vulnerabilities can be exploited remotely as well. Deploying an attack locally

or remotely can affect the success of the mimicry attack, mainly for two reasons.

First, the ‘normal behaviour’ of an application providing service over the network is

likely to be more extensive than an application running locally since it contains addi-

tional functionality for network communication. Second, deploying an attack over the

network may cause the preamble to be more anomalous, since access to the applica-

tion is limited further (i.e. over the network). Therefore, the attacker may not have

sufficient control to prevent the application from generating anomalous behaviour

during the break-in. An in-depth discussion of vulnerable application characteristics

is provided in Chapter 10.

Traceroute

Traceroute is a network diagnosis tool which is used to determine the routing path

between a source and a destination by sending a set of control packets to the destina-

tion with increasing time-to-live values. A typical use of traceroute involves providing

the destination IP, whereas the application returns information on the route taken

between source and destination.

Red Hat Linux 6.2 is shipped with Traceroute version 1.4a5 which is susceptible

to a local buffer overflow exploit which provides a local user with super-user access

[2]. The attack takes advantage of a vulnerability in malloc chunk, and then uses a

134

debugger to determine the correct return address for taking control of the program.

In order to analyse traceroute behaviour under normal conditions, five use cases were

developed, Table 8.1; whereas in previous research [96] only one normal use case was

used for training, namely use case 1 from Table 8.1.

Table 8.1: Traceroute normal use cases

Use Case System Calls

1. Target a remote server 736
2. Target a local server 260
3. Target a non existent host 153
4. Target localhost 142
5. Help screen 24

Restore

Restore is a component of UNIX backup functionality which restores the file system

image taken by the dump command. Files or directories can be restored from full or

incremental backups.

Restore version 0.4b15 on Red Hat Linux 6.2 is vulnerable to an environment

variable attack where the attacker modifies the path of an executable and runs restore.

This results in executing an arbitrary command with super-user privileges which leads

to a root compromise. In the published attack [3], the attacker spawns a root shell.

Table 8.2 summarizes five normal use cases which were developed for restore. As in the

previous work [99], in this case, a regular user executing the restore system program

to retrieve backup data from a remote backup server has been monitored. However,

the above-mentioned monitoring process has been repeated as well for different sizes

of files and backup types.

Samba

The samba suite provides printer and file sharing for Windows clients and can run

on most UNIX variants. Samba sets up printer and network shares which appear as

Windows disks and printers under a Windows operating system.

135

Table 8.2: Restore normal use cases

Use Case System Calls

1. Restore a small file system dump from a
full backup.

2256

2. Restore a small file system dump from an
incremental backup.

1027

3. Restore a large file system dump from a
full backup.

167207

4. Restore a large file system dump from an
incremental backup.

68185

5. Help screen 53

Red Hat Linux 9.0 is shipped with samba suite version 2.2.7a, which has a vul-

nerability [4] which can be exploited over the network to gain super-user privileges.

The buffer overflow occurs when the samba service tries to copy user supplied data

into a static buffer without checking. The published attack binds a root shell to a

network port. Although Parampalli et al. [77] utilized samba in their experiments,

their aim was to investigate whether the attack could be altered in a way to allow

the samba service to run after the attack was deployed. Hence, they did not discuss

how normal behaviour was generated for the anomaly detector. Table 8.3 summarizes

the six normal use cases which are developed for samba. The use cases in Table 8.3

contain behaviour such as mounting/unmounting a samba share, performing file I/O

such as file edit or copy and password change.

Ftpd

Red Hat Linux 6.2 is shipped with Washington University Ftp Server (wuftpd) version

2.6.0(1), which provides FTP access to remote users. wu-ftpd 2.6.0(1) is susceptible to

an input validation attack in which the attacker can corrupt process memory by send-

ing malformed commands and overwriting the return address to execute the attacker’s

shellcode. Although the attack [5] is an input validation attack, the deployment is

similar to a buffer overflow attack, which is to say, a shellcode is injected into the

execution. Table 8.4 summarizes the ten normal use cases which were developed for

136

Table 8.3: Samba normal use cases

Use Case System Calls

1. Mount a samba share successfully 1156
2. Invalid password while mounting samba
share

680

3. Unmount a samba share successfully 186
4. Find and edit a remote file. (Using com-
mands: ls - cd - ls - pico)

254

5. Find and copy a 38MB remote file to a
local directory (Using commands: ls - cd -
cp)

65648

6. Change samba password remotely 1527

ftpd. Use cases 7 through 10 represent the legitimate errors which a user can make

during a normal FTP session. On the other hand, in the previous research [105]

wu-ftpd was run on only large file downloads over a period of two days.

Table 8.4: ftpd normal use cases

Use Case System Calls

1. Upload 10K data 2249
2. Upload 60M data 32912
3. Upload 650M data 334252
4. Download 10K data 2252
5. Download 60M data 32908
6. Download 650M data 334244
7. Three failed login attempts 2236
8. Help screen 2017
9. Attempt to access non-existent files and directories 2213
10. Type non-existent commands. 2017

8.2.2 Linear Genetic Programming

The process for designing mimicry attacks is automated using Genetic Programming

(GP). The GP paradigm differs from most machine learning methodologies in that a

‘population’ of candidate solutions is maintained concurrently throughout the search

137

process [6]. Each candidate solution, or individual, takes the form of a program.

Programs are represented, in the case of this application, as a sequence of system

calls (as opposed to program characteristics in Chapter 6 or assembly instructions

in Chapter 7). As such, the sequences are evolved from a user-predefined set of

permitted system calls. Although parameters for the system calls are specified, there

is no need to support the specification of internal the state i.e., register values.

The search process progresses through the iterative application of a selection oper-

ator, the evaluation of performance associated with the subset of individuals targeted

by the selection operator, and the application of search operators. The selection op-

erator selects two individuals from the population in which the selection probability

is proportional to the rank of the individual. Search operators are then applied to

the individuals, resulting in two children. After the search operators, the children

are appended to the population and the population is Pareto ranked. The worst two

individuals (i.e. the individuals with the lowest two ranks) are discarded from the

population, hence restoring the population size.

The training parameters, which are determined empirically, are detailed in Table

8.5. Individuals are defined using a variable length format, thus population initial-

ization creates individuals with varying program lengths. Search operators take three

forms: cut and splice crossover, instruction-wise mutation and instruction swap. Note

that all search operators are applied stochastically relative to a predefined probability

of application, Table 8.5. The specific details of each operator are detailed in Section

5.4.4 and are described briefly below.

Cut and Splice Crossover. The crossover operator provides a scheme for inves-

tigating instruction sequences which exist currently in the population, but in

different contexts. The cut and splice crossover operator selects, with uniform

probability, separate crossover points on each parent. Therefore, the children

can have different lengths from their parents.

Swap. The basic motivation of the swap operator is to provide the opportunity for

investigating the significance of different instruction orders within the same

individual (the case of a correct instruction mix, but in the wrong order). The

138

swap operator is applied to a single individual, selecting two instructions with

uniform probability and interchanging their position.

Instruction-wise mutation. The mutation operator provides a way to introduce

new sequences to the individual. Mutation is applied instruction-wise, that is to

say, each instruction is tested independently for modification. If the test returns

true then the instruction is replaced with an alternative instruction from a pre-

defined list of instructions. Moreover, the probability of applying the mutation

operator decays linearly with the tournament count, thus lowering the likeli-

hood of introducing instructions which are not currently in the population as

the population evolves. Effectively, this places more emphasis on the crossover

operator as the evolution progresses, thus reinforcing the reuse of system call

sequences which were demonstrated earlier to minimize detection.

Table 8.5: Genetic Programming Parameters

Parameter Setting

Crossover 0.9 probability
Mutation 0.01 probability, linearly decreasing to 0 over

the tournament limit
Swap Instruction swap within an individual with

0.5 probability
Selection Tournament of 4 individuals
Stop Criteria 100,000 tournaments or until the convergence

criteria is met
Convergence Criteria If the Pareto ranks remain unchanged over

10 tournaments
Population 500 individuals with instruction selection

probability proportional to the percentage of
the instruction in normal use cases

Program Length Initialized over 240 system calls, maximum
1000 system calls

Replacement Children replace the lowest ranked two indi-
viduals

Training Time Approximately 2 days
Number of runs 50

139

The principle GP design decisions are now limited to defining the instruction set

(representation) and appropriate goal (fitness function) and a method for achieving

multiple objectives. Tables 8.6, 8.7, 8.8 and 8.9 detail the occurrences of the top

20 system calls as executed by the traceroute, ftpd, restore and samba applications

respectively.

In the case of traceroute (Table 8.6) it is apparent that the top 20 system calls

can cover over 90% of the executed instructions. On the other hand in the cases

of ftpd and restore (Table 8.7 and 8.8) the most frequent 2 to 4 instructions cover

99% of the executed instructions. As a final remark, Tables 8.6, 8.7, 8.8 and 8.9

detailing the frequently executed system calls for traceroute, ftpd, restore and samba

applications demonstrate that all four applications execute memory allocation and

I/O system calls frequently where these are also appropriate for the obfuscation of

mimicry attacks.

The top 20 system calls which the application executes in Tables 8.6, 8.7, 8.8 and

8.9 represent the GP instruction set for the application. It is important to emphasize

that utilizing the knowledge of frequently executed system calls does not break the

‘black-box’ assumption. This information can be obtained by analysing the system

calls on a local copy of the application and therefore does not require any access to

the internal knowledge of the detector.

8.2.3 Fitness Calculation and Pareto Ranking

Pareto Ranking is a method for combining multiple objectives which are possibly

conflicting under the concept of dominance [57]. Specifically in the case of a problem

in which objectives are being minimized, solution A dominates solution B, if and only

if A is as good as B in all objectives and A is better than B in at least one objective.

An individual which is not dominated by any other individual is called a non-

dominated individual. Pareto ranking succeeds in reducing the multi-objective vector

into a scalar fitness value (i.e. the rank) without combining features or assigning a

priori weights. The Pareto ranking algorithm, which is detailed in Section 5.4, is

employed in the experiments detailed in this chapter where the rank of the individual

is equal to the number of individuals which it dominates [57].

140

Table 8.6: GP instruction set for the traceroute application

System Call Occurrence Percentage

gettimeofday 220 16.73%
write 142 10.80%
mmap 113 8.59%
select 99 7.53%
sendto 99 7.53%
close 93 7.07%
open 86 6.54%
read 75 5.70%
fstat 73 5.55%
munmap 49 3.73%
mprotect 34 2.59%
socket 29 2.21%
recvfrom 28 2.13%
brk 27 2.05%
fcntl 26 1.98%
connect 20 1.52%
ioctl 15 1.14%
uname 14 1.06%
getpid 12 0.91%
time 10 0.76%

141

Table 8.7: GP instruction set for the ftpd application

System Call Occurrence Percentage

read 182325 24.45%
rt sigaction 181876 24.39%
alarm 181649 24.36%
write 181596 24.35%
close 11443 1.53%
open 1045 0.14%
time 1037 0.14%
mmap 948 0.13%
fstat 716 0.10%
munmap 506 0.07%
chdir 364 0.05%
fcntl 271 0.04%
getcwd 267 0.04%
socket 256 0.03%
connect 256 0.03%
fchdir 240 0.03%
mprotect 230 0.03%
lstat 227 0.03%
send 195 0.03%
brk 187 0.03%

142

Table 8.8: GP instruction set for the restore application

System Call Occurrence Percentage

write 211704 88.70%
read 26378 11.05%
lseek 132 0.06%
mmap 91 0.04%
open 67 0.03%
close 56 0.02%
fstat 51 0.02%
mprotect 30 0.01%
munmap 29 0.01%
brk 24 0.01%
fcntl 23 0.01%
rt sigprocmask 23 0.01%
utime 15 0.01%
unlink 8 0.00%
chmod 8 0.00%
chown 8 0.00%
ioctl 8 0.00%
stat 8 0.00%
rt sigaction 8 0.00%
llseek 8 0.00%

143

Table 8.9: GP instruction set for the samba application

System Call Occurrence Percentage

read 28329 41.03%
llseek 9612 13.92%

select 9398 13.61%
gettimeofday 9395 13.61%
send 9389 13.60%
fcntl64 1133 1.64%
stat 440 0.64%
open 218 0.32%
close 205 0.30%
munmap 153 0.22%
mmap 126 0.18%
mmap2 126 0.18%
getegid32 99 0.14%
geteuid32 97 0.14%
time 91 0.13%
getsockopt 72 0.10%
mprotect 46 0.07%
umask 44 0.06%
setresgid32 44 0.06%
write 32 0.05%

144

In terms of mimicry attack characteristics, the following objectives are established.

1. Attack Success. The original attack contains a standard shellcode which uses

the execve system call to spawn a UNIX shell upon successful execution. Execve

is a system call which executes the program given as the first argument. Since

execve is not a frequently used system call for traceroute, restore, samba and

ftpd, it is expected that the original attack could be detected easily. To this

end, a different strategy is employed for defining the exploit such that the need

to spawn a UNIX shell is eliminated [45]. Typically, most programs perform

I/O operations – in particular to open, write to / read from and close files.

Tables 8.6, 8.7, 8.8 and 8.9 demonstrate that UNIX applications frequently use

open / write / close system calls. Therefore the goal of the attack is altered

to involve the following three steps which mimic the goals of the original shell

code attack (i.e. to gain super-user privileges):

(a) open the UNIX password file (‘/etc/passwd’);

(b) write a line, which provides the attacker a super-user account which can

login without a password;

(c) close the file.

The objective of the search process conducted by GP is to discover a sequence

of system calls (and appropriate arguments) which perform the above three

steps in the correct order (i.e. the attack cannot write to a file which it has not

opened), while minimizing the anomaly rate from the detector. A behavioural

success function rewarding the above behaviour awards a total of 5 ‘points’ for

establishing the behavioural steps for the ‘core’ attack in Figure 8.1.

2. Anomaly Rate. The anomaly rate represents the principal metric for quali-

fying the likely intent of a system call sequence; a would-be attacker naturally

wishes to minimize the anomaly rate of the detector. Again, no ‘internal knowl-

edge’ is necessary as detectors provide alarm rates as part of their normal mode

of operation. Moreover, as indicated in Section 8.1, the attacker also needs to

minimize the anomaly rate of the exploit. Provided that the preamble is not

145

(a) Success = 0

(b) IF the sequence contains open (‘/etc/passwd’) THEN Success += 1

(c) IF the sequence contains write (‘toor::0:0:root:/root:/bin/bash’) THEN Success
+= 1

(d) IF the sequence contains close (‘/etc/passwd’) THEN Success += 1

(e) IF open precedes write THEN Success += 1

(f) IF write precedes close THEN Success += 1

Figure 8.1: Fitness function for establishing the objectives of modifying the UNIX
password file

highly anomalous, relatively low attack anomaly rates can be accomplished by

utilizing very concise exploits. However, this is not always the case, thus the

preamble is added to facilitate the identification of the most appropriate content

after the exploits are evolved.

3. Delay. In addition to reporting anomaly rates, pH and pHsm respond to

anomalies by enforcing delays. Delay is an exponential function of the locality

frame count, which imposes longer delays when the anomalies are clustered to-

gether. Consequently, even though the attack minimizes the anomaly rate, it

can still be detected if the remaining anomalies are clustered together. There-

fore, the attacker aims to minimize the delays associated with the attacks by

preventing the clusters of anomalies from occurring in the exploit.

4. Attack Length. Attack length is not an immediate concern for the attacker;

longer attacks potentially provide more obfuscation. However, attack length ap-

pears as an objective to encourage GP to perform a wider search for solutions

(i.e. short solutions will be included as well as longer under the Pareto method-

ology). The longer attacks (i.e. with 1000 system calls) are tested against the

vulnerable applications to ensure that the length of the shellcode does not have

any side effects, which can prevent the attack from being deployed successfully.

146

8.2.4 Discussion of the Search Space Size

The mimicry attack generation problem can be considered as a search for a sequence

which provides favourable detection characteristics such as low anomaly rates and

delays. As seen in Table 8.5, the maximum sequence length is defined to be 1000 and

as defined by the instruction sets (Tables 8.6, 8.7, 8.8 and 8.9), each element of the

sequence (i.e. a system call) can take 20 values.

Given the maximum length of the sequence l, and the number of values each

element in the sequence can take n, the total number of candidate solutions can be

calculated with n × n × . . . × n = nl. Therefore, the search space size (i.e. the total

number of candidate solutions), which is defined by the experiment parameters and

the instruction set, is 201000, which is approximately 101301 for all four vulnerable

application scenarios and for all five anomaly detectors.

Obviously, if the attacker chooses to utilize all the system calls available in the

mimicry attack search, depending upon the operating system type, the number of

values which each instruction can take increases to approximately 200 system calls.

Therefore, the search space size would expand to 2001000, which is approximately

102301. This is likely to be the case for a ‘white-box’ approach and the search space

of ‘white-box’ approaches is discussed in Section 9.3.6.

8.3 Results

In order to establish the effectiveness of the mimicry attack generation methodology,

the anomaly rates of the original attacks need to be determined. To do so, original

attacks [2] [3] [4] [5] are downloaded from the SecurityFocus website1 and deployed

against the detector configurations detailed in Section 4.2 on the four vulnerable

applications detailed in Section 8.2.1. The anomaly rate of the preambles and the

original exploits are detailed in Tables 8.10 and 8.11, respectively. Furthermore, Table

8.12 details the anomaly rates of the original attacks (i.e. preamble + exploit).

As discussed in Section 4.2.3, pH with a schema mask (pHsm) employs schema

1The URL for the SecurityFocus website, as of November 2008, is

http://www.securityfocus.com.

http://www.securityfocus.com

147

masks, which results in two differences from the original pH. First, it has a longer slid-

ing window and second, it has an additional parameter (i.e. the schema mask) which

the attacker needs to ‘guess.’ Therefore, two deployment scenarios are employed. In

the first scenario, the attacker does not know the schema mask employed in the tar-

get detector whereas in the second scenario the attacker possesses this information.

By utilizing two pHsm configurations, the goal is to identify the main characteristic

which makes pHsm more resistant against mimicry attacks (i.e. the longer sliding

window length versus the ‘unknown’ schema mask).

In a GP framework multiple solutions are maintained; hence multiple mimicry

attacks are generated. Table 8.14 details the anomaly rates of the mimicry attacks

which produced the lowest anomaly rate for each detector-application pair and Table

8.13 details the corresponding exploit anomaly rates. It is apparent that mimicry

attacks produce smaller anomaly rates than the original attacks. In the case of

traceroute, mimicry attacks manage to reduce the anomaly rate from 60% or above

to 10% or below. Furthermore, results indicate that pHsm is effective in the case of

samba, restore and traceroute where the anomaly rate of the mimicry attack against

pHsm is greater than the mimicry attack against pH (Table 8.14).

Furthermore, it is crucial to emphasize that the framework is employed on all

detector configurations with the same settings. Previous results [45] [49] show that

it is possible to enhance results by using different training settings for different con-

figurations. For example, although the anomaly rate Stide reports for the traceroute

mimicry attack is 10.96%, it can be improved further by using greedy search operators

[45].

As discussed in Section 8.1, attacks consist of two components, the exploit and

the preamble. Table 8.11 shows that the exploits which are employed by the original

attacks are detectable with fairly high anomaly rates, whereas the mimicry exploits

which GP generates have substantially lower anomaly rates (Table 8.13). Preambles

have a considerable impact on the detection of an attack, hence, a further analysis of

preambles is provided in Section 8.5.

A prominent result is that none of the attacks deployed completely undetected. In

previous mimicry attack research [105] [99] [96] [32] [56] [34], the attack was considered

148

to evade detection completely if the exploit component raised no alarms. However,

even though the exploit raised no alarms (e.g. the ftpd attack against pHsm in Table

8.13), the actions taken by the attacker to take control of the application (i.e. the

preamble) raised alarms (Table 8.10), hence producing non-zero anomaly rates (Table

8.14).

Table 8.10: Anomaly rate of the preamble component of the attacks (both original
and mimicry)

Stide pH pHsm Markov Model Neural Network

traceroute 6.98% 36.49% 77.78% 8.54% 22.04%
restore 77.82% 81.01% 93.67% 35.08% 13.29%
samba 3.57% 9.97% 12.07% 6.78% 6.34%
ftpd 19.04% 21.94% 14.30% 6.11% 6.88%

Table 8.11: Anomaly rate of the original exploits

Stide pH pHsm Markov Model Neural Network

traceroute 71.48% 73.91% 83.06% 47.89% 70.21%
restore 88.13% 90.70% 98.30% 48.84% 15.53%
samba 60.04% 60.51% 99.60% 25.53% 21.15%
ftpd 47.52% 47.85% 57.29% 13.65% 18.86%

Table 8.12: Anomaly rate of the original attacks

Stide pH pHsm Markov Model Neural Network

traceroute 61.26% 66.27% 81.79% 38.78% 31.19%
restore 84.69% 87.49% 96.77% 44.26% 14.00%
samba 10.16% 16.02% 99.95% 9.03% 5.73%
ftpd 22.78% 25.54% 20.27% 7.15% 6.91%

149

Table 8.13: Anomaly rate of the best mimicry exploits

Stide pH pHsm pHsm
(mask
unknown)

Markov
Model

Neural
Networks

traceroute 16.67% 11.71% 0.00% 27.60% 0.10% 2.47%
restore 0.40% 0.10% 0.20% 0.31% 0.10% 2.90%
samba 0.50% 0.10% 0.00% 29.23% 0.10% 16.68%
ftpd 57.14% 0.10% 0.00% 35.55% 0.10% 3.46%

Table 8.14: Anomaly rate of the best mimicry attacks

Stide pH pHsm pHsm
(mask
unknown)

Markov
Model

Neural
Networks

traceroute 10.96% 18.29% 2.71% 29.28% 0.20% 1.63%
restore 46.25% 48.57% 54.52% 57.92% 21.05% 5.60%
samba 3.00% 8.11% 7.36% 15.84% 5.45% 5.77%
ftpd 19.30% 16.11% 10.62% 20.19% 4.47% 1.26%

150

Locality Frame Counts and Delays

Although Stide keeps track of the locality frame count, pH employs the locality frame

count to delay the processes. The locality frame count keeps track of the mismatches

over a given time period (by default, the previous 128 system calls). Therefore, a

cluster of mismatches produces high locality frame counts whereas the same number of

mismatches distributed over the attack produces smaller locality frame count values.

pH responds to attacks by slowing down the process based upon the observed locality

frame count. The delay associated with the current system call can be expressed with

Equation 8.1 [91].

delay factor × 0.01 × 2LFC (8.1)

Higher delay factor values produce longer process delays and the LFC signifies how

many of the past 128 system calls were anomalous. Even a slight increase in locality

frame count is sufficient to stop an attack since its effects are exponential and the

value remains high until the locality frame moves to a segment with few anomalies.

Utilizing the Equation 8.1, Figure 8.2 shows the relationship between the locality

frame count values and the resulting delays in seconds. If the observed locality frame

count increases to 120, the resulting delay will be close to 1035 seconds, which can be

expressed in centuries. Sustaining high locality frame counts throughout the attack

will enforce high delays multiple times hence increasing the overall delay above 1035

seconds. Therefore, once the locality frame count rises above a certain value, pH

effectively ‘freezes’ the attack, hence preventing the successful execution of the exploit.

This implies that although the attack achieves a 0% anomaly rate on the exploit

component, it can still be detected and stopped by focusing on the preamble alone.

In the experiments, delays are reported as opposed to the locality frame counts.

Although the detectors, which monitor system call sequences, can report locality

frame counts, locality frame count is not reported as a part of their standard oper-

ation. Given the ‘black-box’ assumption, the feedback to the GP is limited to the

outputs from the detector. This means that only the anomaly rate is provided by

Stide, Markov Model and Neural Network detectors and anomaly rate. Additionally,

the delays are provided by pH and pHsm.

Delays associated with the preambles, original exploits and original attacks are

151

0 20 40 60 80 100 120 140
10

−5

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

Locality Frame Count

D
el

ay
s

(s
ec

)

Figure 8.2: Locality frame counts and the associated delays

detailed in Tables 8.15, 8.16 and 8.17, respectively. Furthermore, Tables 8.18 and 8.19

detail the delays associated with mimicry exploits and mimicry attacks respectively.

Given that Stide, Markov Model and Neural Network detectors do not utilize process

delays, the associated delays in Tables 8.15, 8.16, 8.17, 8.18 and 8.19 are zero.

Although mimicry attacks have shorter delays (i.e. a traceroute mimicry attack

against pHsm where the attacker knows the schema mask can deploy in seconds), any

delay over 1015 is expressed in billions of centuries. Delays in Tables 8.17 and 8.19

demonstrate that even though the attacker manages to achieve zero (or near zero)

anomaly rates for the exploits, anomalies from the preamble can generate clusters

and prevent the attack from deploying.

The lengths of the best mimicry exploits are detailed in Table 8.20. It is apparent

that the exploits generally expand to approximately 1000 system calls, which is the

maximum exploit length in the experiments. This suggests that the exploits employ

code bloat property of GP to hide the true intent of the exploit.

152

Table 8.15: Delay associated with the preamble component of the attacks (both
original and mimicry)

pH pHsm

traceroute 0.74 0.63
restore 1.90E+38 1.01E+39
samba 7.95E+27 1.27E+40
ftpd 5.26E+30 8.03E+17

Table 8.16: Delay associated with the original exploits

pH pHsm

traceroute 4.39E+35 8.51E+35
restore 1.66E+39 3.93E+39
samba 2.97E+30 8.96E+38
ftpd 3.78E+22 4.89E+25

Table 8.17: Delay associated with the original attacks

pH pHsm

traceroute 4.39E+35 8.51E+35
restore 1.85E+39 4.96E+39
samba 3.11E+30 1.41E+40
ftpd 5.26E+30 4.89E+25

Table 8.18: Delay associated with the best mimicry exploits

pH pHsm pHsm (mask unknown)

traceroute 1.11 0 1.50E+14
restore 9.94 9.87 11.1
samba 9.94 0 7.37E+12
ftpd 9.94 0 9.86E+17

153

Table 8.19: Delay associated with the best mimicry attacks

pH pHsm pHsm (mask unknown)

traceroute 1.91 0.63 1.50E+14
restore 1.90E+38 1.01E+39 1.01E+39
samba 7.95E+27 1.27E+40 1.27E+40
ftpd 5.26E+30 8.03E+17 1.79E+18

Table 8.20: Best mimicry exploit lengths generated against five anomaly detectors in
terms of system calls

Stide pH pHsm Markov Model Neural Network

traceroute 34 118 1000 957 1000
restore 1000 1000 999 1000 1000
samba 1000 1000 1000 983 1000
ftpd 11 1000 994 1000 1000

8.3.1 Traceroute Box Plots

In addition to providing anomaly rates for the best mimicry attacks for each detector-

application pair, this thesis also investigates the anomaly rates for all individuals in

the population using box-plot analysis [11]. The box plot defines the third quartile,

median and first quartile. Whiskers extend from each end of the box to the adjacent

values in the data which are within 1.5 times the inter-quartile range from the ends

of the box. Outliers are data with values beyond the ends of the whiskers and are

displayed with a plus sign. The box plots detailed below summarize the characteristics

of 25000 attacks (generated over 50 runs in which each run produced a population of

500 attacks).

Figure 8.3 details the exploit anomaly rate whereas Figure 8.4 details the attack

anomaly rate of the population. The box plots indicate that the exploit and attack

anomaly rate of the attacks against pHsm is greater than the exploit and attack

anomaly rate of the attacks against the original pH. This supports the argument

that pHsm is more difficult to evade than the original pH. Furthermore, anomaly

rates reported by the Markov Model and the Neural Network are lower than the

154

anomaly rates returned by the remaining detectors. Table 8.21 details the preamble

characteristics of the original traceroute attack.

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 8.3: Box plot of the mimicry exploit anomaly rate for traceroute

Figures 8.5 and 8.6 detail the delays associated with the exploits and corresponding

attacks, respectively. It is important to note that only pH and pHsm enforce delays

on anomalous traces, therefore the remaining detectors are considered to have no

imposed delays on the attacks. The results indicate that when the attacker does not

know the schema mask which pHsm employs, the delays associated with the attacks

are higher. Exploit lengths in Figure 8.7 indicate that the populations maintain

attacks with varying lengths, except in the case of a Neural Network detector where

the majority of the attacks have the maximum number of system calls (i.e. 1000).

155

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 8.4: Box plot of the mimicry attack anomaly rate for traceroute

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Exploits

Figure 8.5: Box plot of the mimicry exploit delay for traceroute

156

Stide pH pHsm pHsm mask/unk Markov Model Neural Network
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Attacks

Figure 8.6: Box plot of the mimicry attack delay for traceroute

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

100

200

300

400

500

600

700

800

900

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 8.7: Box plot of the mimicry exploit length for traceroute

157

Table 8.21: Attributes of the original traceroute attack preamble

Attribute Value

Preamble length 53
Anomaly rate (Stide) 6.98%
Anomaly rate (pH) 36.49%
Anomaly rate (pHsm) 77.78%
Anomaly rate (Markov Model) 8.54%
Anomaly rate (Neural Network) 22.04%

158

8.3.2 Restore Box Plots

Figure 8.8 shows the box plot of exploit anomaly rates for restore whereas Figure

8.9 details the anomaly rates for the corresponding attacks. As with the traceroute

box plots, the anomaly rates which pHsm reports are higher than the anomaly rates

which the original pH reports. Furthermore, the anomaly rate of the exploits and

the corresponding attacks which Stide reports are higher than pH, Markov Model

and Neural Network detectors. The exploit length in Table 8.12 suggests that the

exploits against pH, Markov Model and Neural Network detectors were longer than

the exploits against Stide, therefore longer exploit sizes seem to help in minimizing

the anomaly rate of the attack in the case of mimicry attacks against restore.

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 8.8: Box plot of the mimicry exploit anomaly rate for restore

Figure 8.10 details the delays associated with exploits whereas Figure 8.11 shows

the delays associated with the corresponding attacks. The delays indicate that pHsm

imposes more delays on the attacks compared to pH. Furthermore, the lengths of

exploits are shown in Figure 8.12 which indicates that except for the attacks against

pH and the Neural Network detector, the attack length varies over the permitted

attack length (i.e. up to 1000).

159

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 8.9: Box plot of the mimicry attack anomaly rate for restore

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Exploits

Figure 8.10: Box plot of the mimicry exploit delay for restore

160

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

10
39

D
el

ay
 (

S
ec

on
ds

)

Delay of Attacks

Figure 8.11: Box plot of the mimicry attack delay for restore

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

100

200

300

400

500

600

700

800

900

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 8.12: Box plot of the mimicry exploit length for restore

161

The characteristics of the original restore attack preamble are detailed in Table

8.22. Compared to the traceroute preamble, Table 8.21, the restore preamble is longer

and more anomalous, which in turn affects the anomaly rate of the attack. This also

supports the findings from Figures 8.8 and 8.12 which suggest that longer attacks

produce lower anomaly rates.

Table 8.22: Attributes of the original restore attack preamble

Attribute Value

Preamble length 1425
Anomaly rate (Stide) 77.82%
Anomaly rate (pH) 81.01%
Anomaly rate (pHsm) 93.67%
Anomaly rate (Markov Model) 35.08%
Anomaly rate (Neural Network) 13.29%

162

8.3.3 Samba Box Plots

The box plot of the exploit anomaly rates for samba is provided in Figure 8.13 whereas

the box plot for the corresponding attack anomaly rates is provided in Figure 8.14.

As with the results on traceroute and restore, the samba results indicate that the

anomaly rates of the exploits and corresponding attacks against pHsm are higher

compared to the anomaly rates of exploits and corresponding attacks against pH.

Furthermore, although the exploit anomaly rate against Stide is fairly high (around

95%), the resulting attacks have low anomaly rates (around 8%). This is due to

the fact that the samba preamble, Table 8.23, is lengthy and compared to anomaly

rates reported for traceroute and restore preambles, it does not produce high anomaly

rates. Thus, although the exploit is anomalous, a shorter exploit, Figure 8.17, can

deploy without causing a substantial increase in the attack anomaly rate.

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 8.13: Box plot of the mimicry exploit anomaly rate for samba

The delays associated with samba exploits and attacks are detailed in Figures

8.15 and 8.16, respectively. As with the delays observed in the traceroute and restore

box plots, pHsm imposes more delays on attacks compared to the delays which pH

imposes.

163

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

4

6

8

10

12

14

16

18

20

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 8.14: Box plot of the mimicry attack anomaly rate for samba

Stide pH pHsm pHsm mask/unk Markov Model Neural Network
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Exploits

Figure 8.15: Box plot of the mimicry exploit delay for samba

164

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Attacks

Figure 8.16: Box plot of the mimicry attack delay for samba

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

100

200

300

400

500

600

700

800

900

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 8.17: Box plot of the mimicry exploit length for samba

165

Table 8.23: Attributes of the original samba attack preamble

Attribute Value

Preamble length 3868
Anomaly rate (Stide) 3.57%
Anomaly rate (pH) 9.97%
Anomaly rate (pHsm) 12.07%
Anomaly rate (Markov Model) 6.78%
Anomaly rate (Neural Network) 6.34%

166

8.3.4 Ftpd Box Plots

The box plot which shows the anomaly rate of the exploits for ftpd is detailed in

Figure 8.18. Furthermore, Figure 8.19 shows the box plot of the attack anomaly rates

for ftpd. The results show that, although the anomaly rate of the exploits against

pHsm is greater compared to the anomaly rate of exploits against the original pH, the

resulting attack against the original pH has a higher anomaly rate compared to the

attacks against pHsm. The box plot of exploit length in Figure 8.22 indicates that

this may be due to the fact that the attacks against the original pH are longer than

the attacks against pHsm. Thus, the longer exploit size worked against the attacker,

hence increasing the attack anomaly rate. Conversely, the anomaly rate of the exploits

and the corresponding attacks against Markov Model and Neural Network detectors

are fairly low. The box plot of exploit lengths indicates that the exploits against both

detectors are fairly long, which is beneficial in reducing the overall anomaly rate of

the attacks.

The delays associated with the exploits are detailed in Figure 8.20 whereas the

delays associated with the corresponding attacks are provided in Figure 8.21. Delay

box plots indicate that the attacks are delayed more if the attacker does not know

the schema mask. Furthermore the characteristics of the original ftpd preamble are

detailed in Table 8.24.

Table 8.24: Attributes of the original ftpd attack preamble

Attribute Value

Preamble length 2601
Anomaly rate (Stide) 19.04%
Anomaly rate (pH) 21.94%
Anomaly rate (pHsm) 14.30%
Anomaly rate (Markov Model) 6.11%
Anomaly rate (Neural Network) 6.88%

167

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 8.18: Box plot of the mimicry exploit anomaly rate for ftpd

Stide pH pHsm pHsm mask/unk Markov Model Neural Network
0

5

10

15

20

25

30

35

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 8.19: Box plot of the mimicry attack anomaly rate for ftpd

168

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

10
0

10
5

10
10

10
15

10
20

10
25

10
30

D
el

ay
 (

S
ec

on
ds

)

Delay of Exploits

Figure 8.20: Box plot of the mimicry exploit delay for ftpd

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

10
15

10
20

10
25

10
30

D
el

ay
 (

S
ec

on
ds

)

Delay of Attacks

Figure 8.21: Box plot of the mimicry attack delay for ftpd

169

Stide pH pHsm pHsm mask/unk Markov Model Neural Network

0

100

200

300

400

500

600

700

800

900

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 8.22: Box plot of mimicry exploit length for ftpd

170

8.4 Training Sensitivity of Anomaly Detectors

Training set selection is an important decision in anomaly detection since it has

a considerable impact on the normal behaviour model which the detector builds.

Furthermore, testing the anomaly detector on numerous normal behaviour scenarios

is crucial in determining a suitable detection threshold.

When anomaly detectors are employed in real-world conditions, an acceptable

detection threshold should be established in terms of an anomaly rate to minimize

the false positive rate [46]. Thus, the detection occurs if the application activity be-

ing monitored produces an anomaly above the threshold. Although such a threshold

varies between applications, it is reasonable to assume that it is non-zero. Charac-

teristics of a training set, configuration parameters of a detector and different stages

of an attack are some of the factors which may affect the setting of such a threshold.

Thus, this section analyses the significance of different training sets for Stide. The

same analysis is performed for the remaining anomaly detectors and the results are

provided in Appendix A. The objective of the training set analysis is to determine

how the anomaly rate changes when the anomaly detectors encounter different normal

behaviour scenarios and whether it is possible to determine a suitable anomaly rate

threshold.

Tables 8.25, 8.27, 8.26, 8.28, summarize the results of training detectors on differ-

ent use cases denoting normal behaviour with testing performed over the remaining

use cases and the known vulnerability in the case of Stide. The last row – “all normal”

– represents the case in which Stide training is conducted over all cases associated

with normal behaviour. The last column – “attack” – represents the case in which

the original attack is tested on Stide trained with the data set(s) indicated in the

corresponding rows. All of the test results are given in terms of percentages where

0% indicates normal and 100% indicates completely anomalous behaviour. The use

cases are described in Tables 8.1, 8.2, 8.3 and 8.4.

In Table 8.25, it is apparent that the anomaly rate is sensitive to a wide range of

behavioural properties for traceroute. For example, in the case of target host change,

Stide produces a 56% anomaly rate when it is trained on the local server trace (case2)

and tested on a remote server trace (case1). For instances of Stide trained with a

171

single trace file anomaly rates on normal use cases vary between 2.8% and 94.3%.

Obviously, training Stide over all the normal use cases resulted in a zero anomaly

rate for normal use cases (see all normal columns in Tables 8.25, 8.27, 8.26, 8.28). On

the other hand, for traceroute, the anomaly rate of the attack varies between 61.26%

and 73.87%. The implication of these findings is that, given the 94.3% anomaly

rates for some normal behaviour and a 61.26% anomaly rate for the original attack,

determining a suitable threshold for anomaly detectors monitoring the traceroute

application is not straightforward and will most likely involve a trade-off between the

detection rate and the false positive rate.

Table 8.25: Anomaly rates reported by Stide with different training combinations for
traceroute

case1 case2 case3 case4 case5 attack

case1 0.00% 2.75% 7.43% 15.79% 9.49% 61.26%
case2 56.09% 0.00% 7.43% 15.79% 7.30% 61.26%
case3 78.11% 40.39% 0.00% 15.79% 48.91% 63.06%
case4 94.25% 83.53% 71.62% 0.00% 84.67% 73.87%
case5 73.87% 31.37% 35.14% 15.79% 0.00% 64.26%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 61.26%

Different use cases for samba exhibit different behaviours as shown in Table 8.26.

When the detector is trained on case1 (mounting a samba share), it produces high

anomaly rates for cases 4 and 5, which involve file I/O on a samba share. Furthermore,

it is interesting that the attack produces the second lowest anomaly rate when trained

on case1. With the anomaly rate of the attack lower than the anomaly rate of other

normal behaviour cases, setting a threshold which can detect the attack without

producing false alarms would be very difficult.

In Table 8.27, anomaly rates for the common use cases for restore, in other words

typical full and incremental backup operations, are low. Therefore, results indicate

that the ‘nominal’ use of restoring from incremental and full backups (use cases 1 to

4) exhibit similar behavioural properties. On the other hand, when Stide is trained on

case 5 (help screen), tests on cases 1 to 4 produce anomaly rates even higher than the

attack. Therefore, even though the behaviour of the application is fairly well defined

172

Table 8.26: Anomaly rates reported by Stide with different training combinations for
samba

case1 case2 case3 case4 case5 case6 attack

case1 0.00% 4.63% 17.13% 91.97% 85.78% 34.28% 14.67%
case2 34.38% 0.00% 66.30% 95.58% 85.81% 49.31% 25.86%
case3 51.66% 55.22% 0.00% 97.99% 99.99% 69.15% 55.76%
case4 72.95% 57.91% 92.27% 0.00% 99.69% 78.91% 59.30%
case5 68.24% 50.30% 92.27% 24.90% 0.00% 73.24% 56.13%
case6 11.87% 3.13% 17.68% 95.58% 85.80% 0.00% 10.55%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 10.16%

for the ‘nominal’ use cases, it is important to account for the behaviour changes when

the program is executed with improper or missing input.

Table 8.27: Anomaly rates reported by Stide with different training combinations for
restore

case1 case2 case3 case4 case5 attack

case1 0.00% 1.37% 0.00% 0.02% 8.33% 84.69%
case2 1.78% 0.00% 0.01% 0.06% 8.33% 84.69%
case3 1.60% 2.35% 0.00% 0.03% 8.33% 84.69%
case4 1.87% 0.29% 0.01% 0.00% 8.33% 84.69%
case5 98.05% 95.69% 99.97% 99.94% 0.00% 84.76%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 84.69%

Anomaly rates reported for ftpd in Table 8.28 show that uploading and down-

loading scenarios (cases 1 to 6) are similar in behaviour. However, when legitimate

errors are introduced to the FTP sessions (cases 7 to 10), anomaly rates vary be-

tween 2.64% and 99.48%. As with restore, the ‘nominal’ use of the ftpd application

(as specified by cases 1 to 6) has few variations and legitimate errors produce high

anomaly rates. Given that the original attack produces a 23% anomaly rate whereas

normal use produces above 80% anomaly rates for certain use cases, it is difficult to

determine an anomaly rate threshold which could distinguish attack behaviour from

legitimate errors in the case of ftpd.

From the perspective of generating mimicry attacks, previous work [105] [96] [99]

173

Table 8.28: Anomaly rates reported by Stide with different training combinations for ftpd

case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 attack

case1 0.00% 0.02% 0.00% 2.32% 0.16% 0.02% 7.59% 0.25% 1.86% 0.25% 24.71%

case2 0.27% 0.00% 0.00% 2.10% 0.14% 0.01% 7.37% 0.00% 1.63% 0.00% 24.54%

case3 0.27% 0.00% 0.00% 2.10% 0.14% 0.01% 7.37% 0.00% 1.63% 0.00% 24.54%

case4 1.70% 0.10% 0.01% 0.00% 0.00% 0.00% 7.23% 0.00% 1.45% 0.00% 23.54%

case5 1.70% 0.10% 0.01% 0.00% 0.00% 0.00% 7.23% 0.00% 1.45% 0.00% 23.54%

case6 1.70% 0.10% 0.01% 0.00% 0.00% 0.00% 7.23% 0.00% 1.45% 0.00% 23.54%

case7 22.24% 94.69% 99.48% 22.66% 94.73% 99.48% 0.00% 15.25% 20.29% 15.25% 34.13%

case8 6.74% 93.64% 99.37% 7.40% 93.69% 99.38% 7.46% 0.00% 5.40% 0.00% 24.61%

case9 2.64% 93.36% 99.35% 2.72% 93.37% 99.35% 7.23% 0.00% 0.00% 0.00% 23.48%

case10 6.74% 93.64% 99.37% 7.40% 93.69% 99.38% 7.46% 0.00% 5.40% 0.00% 24.61%

all normal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 22.78%

174

argues that the selection of the training set is not very crucial because any mimicry

attack found within limited normal behaviour will be magnified on detector config-

urations which include a wider set of normal behaviour, including legitimate errors.

Conversely, this thesis argues that training set selection has two important implica-

tions for the mimicry attacks: (1) provided that the mimicry attacks produce anoma-

lies (albeit from the exploit), the determination of the threshold would affect whether

the resulting mimicry attack remains below the threshold (and evade detection) or

not; (2) if the mimicry attacks are generated in a normal behaviour pattern which is

not in the target detector’s normal behaviour, then they can be detected easily.

Training set experiments indicate that normal behaviour can vary substantially

between different normal use case scenarios, which is particularly apparent for ftpd

and traceroute. Consequently, anomaly rates for normal behaviour remain high as

well, which in turn makes it difficult to identify attacks. For example, if the anomaly

rate for normal behaviour is around 70%, it is difficult to detect an attack with a 20%

anomaly rate, as in the case of ftpd.

Training set analysis is also performed for pH, pHsm, Markov Model and Neural

Network detectors and the results are provided in Appendix A.

175

8.5 A Closer Look at Preambles

Generally, buffer overflow attacks aim to inject a shellcode into a vulnerable buffer and

force the vulnerable application to execute the injected assembly program. The size

of the vulnerable buffer is generally too short to inject an entire program, therefore

the injected shellcode executes system calls on the target host to spawn a UNIX shell

or write to the password file of the host with super-user privileges.

This thesis makes the observation that there are two parts to each attack, the

preamble and the exploit. The preamble is composed of the system calls which the

application executes during the phase in which the attacker tries to gain control of

the vulnerable application. On the other hand, the exploit includes the system calls

which the attacker executes after gaining full control of the application.

In a typical buffer overflow exploit, the first step is to corrupt the data types and

local variables, which gives the attacker control of the application. For example, in

case of the original ftpd attack [5], the attacker achieves this by logging onto the ftpd

server anonymously and issuing malformed commands such as CWD ~{. The actions

taken by the attackers before they gain full control of the application are called the

preamble. During the preamble phase, the application is still operational and the

attacker does not have full control yet, hence the attacker may not be able to prevent

the vulnerable application from generating anomalous behaviour.

After the attacker gains control of the application, the second step is to execute

arbitrary code or a command to carry out a malicious action such as spawning a

root shell or creating a super-user account. Commonly, this is achieved by injecting

a shellcode. A shellcode is a short segment of an assembly program which aims to

execute code on the vulnerable host. In the case of the original ftpd attack, the

shellcode spawns a UNIX shell with super-user privileges and binds it to a port so

that the attacker can login without supplying a password. Attackers can modify the

exploit components fairly easily by changing the injected shellcode to evade detection.

On the other hand, modifying the preamble requires finding an alternative way to

take advantage of the vulnerability or finding another vulnerability, and therefore

cannot be modified easily.

Although Wagner et al. [105] were aware of the preambles, they assumed that

176

the attacker could gain control of the vulnerable application silently (in their paper

[105], ftpd application). Specifically, they state that “Moreover, we also assume that

the attacker can silently take control of the application without being detected. This

assumption is not always satisfied, but for many common attack vectors, the actual

penetration leaves no trace in the system call trace. For instance, exploiting a buffer

over-run vulnerability involves only a change in the control of the program, but does

not itself cause any system calls to be invoked, and thus no syscall-based IDS can

detect the buffer overrun itself.” [105] Indeed, the results discussed in this thesis agree

with the observation of Wagner et al. [105] that the attacker may not always be able

to take control of the application silently. Furthermore, the analysis of the preamble

in this thesis differs from the observations of Wagner et al. [105] and reveals that the

actual penetration (i.e. the preamble) does leave anomalous system calls in the trace,

at least in the cases of traceroute, restore, samba and ftpd applications.

This thesis proposes that a clear differentiation between the preamble and exploit

is necessary since attackers can alter the system calls executed after they have full

control whereas during the preamble phase, where the attacker prepares the vulner-

able application for the buffer overflow, the interaction between the attacker and the

application may inevitably cause anomalous system calls.

The boundary between the preamble and the exploit can be determined by locating

the first action of the shellcode. The four original attacks [2] [4] [3] [5] employed in the

analysis execute an execve(‘/bin/sh′) system call to spawn a UNIX shell with super-

user privileges. Any system call including and after execve(‘/bin/sh′) is a result of the

spawned UNIX shell whereas the system calls before execve(‘/bin/sh′) are executed

while the attacker was corrupting the data types and variables to deploy the exploit.

In previous work [105] [99] [96] [32] [56] [34], the attack was said to be optimal if

the exploit component raised no alarms. However, even when the exploit raises no

alarms, introducing the preamble can generate alarms for both the preamble itself

and the transition between the preamble and the exploit. Therefore, the objective of

the preamble analysis is to observe the source of the anomalies for the preamble and

exploit components.

177

To do so, the original attacks for traceroute, samba, restore and ftpd were de-

ployed against the five anomaly detectors, Section 4.2, and the anomaly rates for the

preamble and exploit were investigated separately.

8.5.1 Preamble Analysis

Tables 8.29, 8.30, 8.31 and 8.32 detail the ratio of mismatches reported by the detec-

tors for the preamble and exploit components separately for the original traceroute,

restore, samba and ftpd attacks, respectively. As discussed in Section 4.2.1, a mis-

match is recorded if the current observed behaviour does not match any behaviour in

the ‘normal database.’ The anomaly rate is then calculated by dividing the number

of mismatches by the total number of observations. The Neural Network detector em-

ploys the frequency of system calls and hence does not support temporal relationships

explicitly. Therefore, the mismatch analysis is not applicable to the Neural Network

detector in Tables 8.29, 8.30, 8.31 and 8.32.

Table 8.29: Ratio of mismatches for the original traceroute attack

Preamble Ratio Exploit ratio Total Count

System Calls 15% 85% 344
Mismatches (Stide) 2.01% 97.99% 199
Mismatches (pH) 12.62% 87.38% 214
Mismatches (pHsm) 19.60% 80.40% 250
Mismatches (Markov Model) 5.30% 94.70% 132
Mismatches (Neural Network) N/A N/A N/A

In total, the traceroute attack executed 344 system calls of which 15% belongs

to the preamble component and 85% to the exploit. Against Stide, the attack as a

whole (i.e. preamble and exploit combined) produced 199 mismatches 97.99% of which

was generated by the exploit. Similar observations can be made for the mismatches

recorded by the other detectors for traceroute. Therefore, in the case of the traceroute

attack, an attacker can alter his exploit and reduce the anomaly rate substantially.

The restore attack executed 4454 system calls where 68% belongs to the exploit.

Although the restore attack is longer than traceroute and the ratio of mismatches

178

Table 8.30: Ratio of mismatches for the original restore attack

Preamble Ratio Exploit ratio Total Count

System Calls 32% 68% 4454
Mismatches (Stide) 30.83% 69.17% 3613
Mismatches (pH) 30.89% 69.11% 3881
Mismatches (pHsm) 32.21% 67.79% 4272
Mismatches (Markov Model) 26.50% 73.50% 1970
Mismatches (Neural Network) N/A N/A N/A

Table 8.31: Ratio of mismatches for the original samba attack

Preamble Ratio Exploit ratio Total Count

System Calls 88% 12% 4396
Mismatches (Stide) 31.64% 68.36% 433
Mismatches (pH) 55.62% 44.38% 694
Mismatches (pHsm) 47.22% 52.78% 989
Mismatches (Markov Model) 66.58% 33.42% 395
Mismatches (Neural Network) N/A N/A N/A

Table 8.32: Ratio of mismatches for the original ftpd attack

Preamble Ratio Exploit ratio Total Count

System Calls 86% 14% 3024
Mismatches (Stide) 73.20% 26.80% 679
Mismatches (pH) 75.20% 24.80% 762
Mismatches (pHsm) 62.84% 37.16% 592
Mismatches (Markov Model) 74.42% 25.58% 215
Mismatches (Neural Network) N/A N/A N/A

179

from the preamble is higher than traceroute, the attackers can alter their exploit to

reduce the anomaly rate.

On the other hand, the ftpd attack executed 3024 system calls, of which 86%

belongs to the preamble component and 14% to the exploit. The attack as a whole

produced 679 mismatches, 73.20% of which was generated by the preamble. Conse-

quently, modifying the exploit would have less impact on the anomaly rate for ftpd.

The samba attack exhibited similar properties, however the preamble produced a

smaller proportion of the overall anomaly rate compared with the ftpd attack.

8.5.2 Discussion of the Preamble Analysis

The length of the preamble gains importance when determining the operational limits

of the detectors. Specifically, if the preamble is short and if the attacker manages to

modify his exploit accordingly (e.g. instead of spawning a root shell, creating a super-

user account), the anomaly rate of the attack as a whole can be reduced substantially.

However, if the preamble is long, there will be a higher likelihood of raising alarms

no matter what type of exploit is being used [47].

Tables 8.29, 8.30, 8.31 and 8.32 indicate that the anomaly rate returned for the

exploit alone does not represent the anomaly rate returned for the entire attack since

the activities associated with gaining control of the application (preamble) raises

alarms. Furthermore, the ratio of the preamble to the exploit and the anomaly rate

from the preamble play an important role in the overall anomaly rate of an attack. It

is evident that the anomaly rate of an attack can be reduced more effectively when

the exploit is relatively longer than the preamble, even though the exploit itself raises

some alarms.

Furthermore, in previous work, an attack was considered optimal if the exploit

never generated any mismatches against the detector database. Anomaly detectors

count mismatches between the candidate trace (in the case of an attack preamble plus

exploit) and the sequences of normal behaviour in the detector database. That is to

say, a sliding window comparison is made between the database and the candidate

trace (i.e. preamble + exploit). Therefore, even though the exploit raises no alarms,

introducing the preamble will return mismatches (alarms) for both the preamble itself

180

and at the transition between the preamble and the exploit. Thus, for a predefined

preamble, the best that a mimicry attack can do is to minimize the contribution from

the exploit and the transition from the preamble to the exploit. Furthermore, in the

cases of pH and pHsm, the anomalies from the preamble can produce considerable

delays and stop the attack before the exploit is deployed.

8.6 Discussion of Results

The experiments detailed in this chapter employ the proposed GP with a Pareto

ranking approach to generate mimicry attacks against five anomaly detectors which

monitor four vulnerable UNIX applications. The mimicry attacks are evolved not

manually but automatically, in this case using a linear Genetic Programming-based

approach. It is assumed that the attacker can obtain a copy of the detector and

run it locally. Realistically, the detector will not be open source and/or the attacker

will not know the exact configuration parameters of the detector at the target site.

Therefore, the task of the attacker is to craft a mimicry attack that will evade the

detector on the victim host based upon the feedback (anomaly rate, delay) obtained

from the local copy of the detector. Such a perspective denotes a ‘black-box’ model of

the detector, whereas previous research has relied on a ‘white-box’ assumption [105]

[99] [96] [32] [56] [34]. In the proposed approach, emphasis is placed upon:

1. the identification of an appropriate set of system calls from which exploits are

built, in this case informed by the most frequently executed instructions from

the vulnerable application;

2. the identification of appropriate goals such as the minimization of the detector

anomaly rate and delay while matching key steps in establishing the ‘core’

exploit;

3. the support for obfuscation, which – in this case – is a direct side effect of the

stochastic search operators inherent in EC;

4. measurement of the anomaly rate not after the attacker gains control, but over

the entire attack.

181

Results indicate that the framework is successful in reducing the anomaly rate of

the attacks while utilizing only the anomaly rate and the delays which the detector

reports without using privileged detector information. The degree of success depends

upon various characteristics of the attack such as the preamble length, preamble

anomaly rate and the exploit length. In other words, finding a zero anomaly rate

exploit does not necessarily imply that the attack can evade detection completely.

Although the previous work was effective in generating exploits with zero anomaly

rates, the results discussed in this chapter establish that the preamble component

and the transition between the preamble and the exploit raises alarms, hence it is

very difficult for an attacker to evade detection completely. Furthermore, the results

indicate that for an ftpd exploit which raises no alarms the corresponding attack still

produced a 10.62% anomaly rate.

Additionally, experiment results demonstrate that delay associated with locality

frame counts is an effective way to stop an attack. Even though the attack achieves

low anomaly rates, it can be frozen effectively if the anomalies are clustered together.

In particular, mimicry attacks against samba have low anomaly rates yet the delays

associated with them are in the billions of centuries. On the other hand, if the delays

associated with locality frame count will be employed in the real-world, reducing the

false positive for the detector deserves further attention since legitimate behaviour

which is unknown to the detector can cause substantial delays as well.

The training sensitivity analysis indicates that the selection of appropriate training

sets is crucial since it affects the resulting normal behaviour model. Furthermore the

analysis results indicated that normal behaviour can vary substantially. In such a case,

identifying a suitable threshold can be problematic since normal behaviour scenarios

not included in the normal behaviour model of the detector can produce high anomaly

rates which in turn makes it difficult to determine a detection threshold.

Mimicry attacks have various characteristics beyond anomaly rate which can affect

their success. Even if an attack has a zero anomaly rate exploit, should the preamble

be lengthy and produce several anomalies, it can be detected easily. Furthermore

although both the preamble and the exploit raise very few alarms, if the anomalies

are clustered together, they can cause an increase in the locality frame count, hence

182

‘freezing’ the attack effectively. Another method which an attacker can employ to

minimize the anomaly rate of an attack with a detectable preamble is to employ a

longer exploit which raises fewer or no alarms, hence injecting more normal behaviour

to obfuscate the anomalies.

In the light of these observations, mimicry attack and vulnerability testing re-

search should move from focusing on the anomaly rate alone to incorporating multi-

ple characteristics such as the preamble and exploit length, locality frame counts and

associated delays.

Chapter 9

Analysis of Mimicry Attacks

Chapter 8 and the relevant work reported the mimicry attack anomaly rates for

the detectors against which they are trained. Although this provides a comparison

between the anomaly rate of the original attack and the generated mimicry attack, it

does not answer the question of what the anomaly rate would be if the same mimicry

attack were deployed against a different detector. An analysis addressing this issue is

provided in Section 9.1 and aims to identify whether mimicry attacks can generalize

to other detectors or are specific to the detector against which they are trained.

Previous work [105] [99] [96] [32] [56] [34] assumed a ‘white-box’ access to the

anomaly detectors, which implies that the attacker can use the normal database of the

detector, the training sets and knowledge of the detection mechanism to facilitate the

‘white-box’ attack generation process. On the other hand, the ‘black-box’ approach

taken in this thesis implies that the knowledge of the internal workings of the detector

is ‘hidden’ from the attacker. Therefore, the attacker has to interact with the detector

during its operation and utilize the feedback from the detector (in the form of anomaly

rates) to facilitate the ‘black-box’ attack generation process. Given that the previous

work assumes a ‘white-box’ approach and this thesis assumes a ‘black-box’ approach,

Sections 9.2 and 9.3 compare and contrast the similarities and differences between

the attacks generated by the ‘white-box’ and ‘black-box’ approaches.

The analysis in Section 9.2 aims to compare the ‘white-box’ mimicry attacks pro-

vided in the previous work with the ‘black-box’ mimicry attacks which were generated

for this thesis. Given that the training sets utilized in previous work differ from the

training sets utilized in this thesis, Section 9.3 expands the analysis by developing

methods to generate ‘white-box’ attacks against each anomaly detector. The ‘white-

box’ attacks generated in Section 9.3 can be compared to the ‘black-box’ attacks

183

184

detailed in Section 9.1.1, because they are generated against the same detector con-

figurations.

9.1 Deploying a Mimicry Attack Against Numerous Detectors

In Chapter 8, the anomaly rates of the mimicry attacks were reported against the de-

tector for which they were trained. Although such a deployment scenario is sufficient

to make a comparison between the original and the mimicry attack, a natural exten-

sion is to deploy the mimicry attacks against other detectors. In such an extended

scenario, it is important to make the distinction between a ‘training’ detector and a

‘test’ detector. The training detector is the anomaly detector with which the pro-

posed approach interacted while generating the mimicry attacks. On the other hand,

a test detector is another anomaly detector which was not employed during training.

In this section, the objective of the analysis is to determine the anomaly rate of the

GP-generated mimicry attacks against the test detectors. Such an analysis provides

an insight into the success of the mimicry attack against a detector for which it is

not trained. In other words, it answers the question: can a mimicry attack against

a specific detector work against other detectors? Or, from a different perspective,

are mimicry attacks detector specific or can they be applicable to various detectors

(sharing similar monitoring and detection techniques)?

To facilitate the analysis, the best attacks determined for each application and

detector scenario are deployed against the other detectors monitoring the same ap-

plication. The analysis in Section 9.1.1 focuses on the anomaly rates whereas the

analysis in Section 9.1.2 focuses on the delays.

9.1.1 Analysis of the Anomaly Rates

In Table 9.1, when the best mimicry attacks generated against Stide were tested

against pH, pH with a schema mask (pHsm), Markov Model and Neural Network

detectors, the anomaly rate of the exploits were fairly low – particularly for the

restore and samba attacks. This indicates that exploits generated against Stide can

generalize to other detectors very well. On the other hand, given that the Neural

Network utilizes a different monitoring method (frequency of system calls as opposed

185

to sequence of system calls), the exploits generated against Stide and tested on the

Neural Network detector do not produce low anomaly rates. Furthermore, anomaly

rates of the corresponding attacks (preamble + exploit) are detailed in Table 9.2.

Table 9.1: Anomaly rates of the exploits generated against Stide, tested on the pH,
pHsm, Markov Model and Neural Network detectors

Stide pH pHsm Markov Model Neural Network

traceroute 16.67% 29.63% 81.25% 14.29% 37.24%
restore 0.40% 0.20% 0.81% 0.20% 2.73%
samba 0.50% 0.30% 0.20% 0.20% 57.15%
ftpd 57.14% 33.33% 100.00% 18.18% 34.71%

Table 9.2: Anomaly rates of the attacks generated against Stide, tested on the pH,
pH with a schema mask, Markov Model and Neural Network detectors

Stide pH pHsm Markov Model Neural Network

traceroute 10.96% 33.75% 75.36% 7.95% 15.89%
restore 46.25% 48.69% 59.51% 21.09% 6.44%
samba 3.00% 8.15% 7.41% 5.45% 9.48%
ftpd 19.30% 22.19% 38.21% 6.20% 2.69%

Table 9.3 details the exploit anomaly rates generated against pH. Again, the

exploit anomaly rate of the exploits trained on pH are fairly low when they are tested

against Stide, pH, pHsm and Markov Model detectors. Another interesting result

is that the exploit anomaly rate of the restore attack against the Neural Network

detector is 1.80%, which is lower than the exploit anomaly rate of the restore attack

which was generated against the Neural Network detector (Table 8.13). This implies

that the system call frequency distribution of the exploit trained on pH produces low

anomaly rates against the Neural Network detector. Furthermore, Table 9.4 details

the attack anomaly rates of the exploits in Table 9.3. The anomaly rates of the

attacks generated against pH tested on the Markov Model detector are fairly close to

the anomaly rates of the attacks generated against the Markov Model detector (Table

8.14).

186

Table 9.3: Anomaly rates of the exploits generated against pH, tested on the Stide,
pHsm, Markov Model and Neural Network detectors

Stide pH pHsm Markov Model Neural Network

traceroute 98.25% 11.71% 13.00% 10.92% 73.03%
restore 42.57% 0.10% 0.20% 0.20% 1.80%
samba 81.63% 0.10% 0.71% 0.30% 36.21%
ftpd 24.30% 0.10% 1.12% 0.20% 11.55%

Table 9.4: Anomaly rates of the attacks generated against pH, tested on the Stide,
pHsm, Markov Model and Neural Network detectors

Stide pH pHsm Markov Model Neural Network

traceroute 73.25% 18.29% 30.72% 8.14% 44.95%
restore 63.39% 48.57% 59.43% 21.05% 6.11%
samba 19.74% 8.11% 10.06% 5.47% 9.29%
ftpd 20.60% 16.11% 28.18% 4.50% 3.16%

Table 9.5 details the exploit anomaly rates of the best case attacks generated

against pH with schema a mask (pHsm), whereas Table 9.6 provides the anomaly

rates of the corresponding attacks. As opposed to the previous results, mimicry

attacks generated against pHsm do not seem to generalize over to other detectors.

Although the restore exploit produces low anomaly rates against pH and the Markov

Model, the remaining exploit and attack anomaly rates are fairly high. This suggests

that the evasion technique which GP employs against pHsm does not generalize well

to the other detectors.

Table 9.5: Anomaly rates of the exploits generated against pHsm, tested on the Stide,
pH, Markov Model and Neural Network detectors

Stide pH pHsm Markov Model Neural Network

traceroute 100.00% 86.10% 86.15% 15.08% 100.00%
restore 74.37% 0.60% 11.01% 0.20% 16.12%
samba 99.50% 31.22% 29.23% 25.47% 40.35%
ftpd 100.00% 55.12% 38.73% 33.57% 14.38%

187

Table 9.6: Anomaly rates of the attacks generated against pHsm, tested on the Stide,
pH, Markov Model and Neural Network detectors

Stide pH pHsm Markov Model Neural Network

traceroute 96.15% 83.27% 85.12% 14.42% 100.00%
restore 76.46% 48.87% 63.67% 21.10% 9.55%
samba 23.40% 14.45% 15.84% 10.64% 11.76%
ftpd 41.39% 31.19% 38.43% 13.69% 3.64%

The analysis of the best case exploits generated against the Markov Model detector

is provided in Table 9.7. Furthermore, the attack anomaly rates for the corresponding

exploits are provided in Table 9.8. The anomaly rates indicate that mimicry attacks

against the Markov Model do not generalize well to the other detectors. Given that a

first order Markov Model can be described as a detector with a sliding window length

of 2 (i.e. the current state depends only upon the immediately previous state) as

opposed to Stide, pH and pHsm with sliding window lengths greater than or equal to

6, these results are not surprising.

Table 9.7: Anomaly rates of the exploits generated against the Markov Model detec-
tor, tested on the Stide, pH, pHsm and Neural Network detectors

Stide pH pHsm Markov Model Neural Network

traceroute 100.00% 85.26% 84.56% 0.10% 100.00%
restore 99.30% 41.69% 51.93% 0.10% 32.06%
samba 100.00% 37.81% 28.50% 0.10% 43.39%
ftpd 100.00% 42.50% 26.07% 0.10% 12.50%

Furthermore, the exploit anomaly rates of the best case attacks generated against

the Neural Network detector are provided in Table 9.9 and the corresponding attack

anomaly rates are provided in Table 9.10. When the attacks generated against the

Neural Network detector were deployed against other detectors, the resulting exploit

and attack anomaly rates were fairly high. This could be attributed to two factors:

(1) as opposed to utilizing system call sequence information, a Neural Network de-

tector utilizes the frequency distribution of system calls which is a more compressed

188

Table 9.8: Anomaly rates of the attacks generated against the Markov Model detector,
tested on the Stide, pH, pHsm and Neural Network detectors

Stide pH pHsm Markov Model Neural Network

traceroute 95.98% 82.65% 83.97% 0.20% 100.00%
restore 86.63% 65.34% 79.92% 21.05% 14.27%
samba 23.24% 15.72% 15.63% 5.45% 7.40%
ftpd 41.48% 27.76% 35.01% 4.47% 3.92%

representation of system call sequences; (2) the detection methodology is different

since the other approaches bases their decision upon system call sequences whereas

the neural network approach base the decision upon the output of the model encap-

sulated by the neural network which describes the frequency distribution of system

calls for ‘normal behaviour.’

Table 9.9: Anomaly rates of the exploits generated against the Neural Network de-
tector, tested on the Stide, pH, pHsm and Markov Model detectors

Stide pH pHsm Markov Model Neural Network

traceroute 100.00% 99.50% 99.29% 75.62% 2.47%
restore 100.00% 97.28% 94.50% 58.54% 2.90%
samba 100.00% 87.11% 83.10% 51.25% 16.68%
ftpd 97.39% 61.83% 20.82% 30.07% 3.46%

Table 9.10: Anomaly rates of the attacks generated against the Neural Network
detector, tested on the Stide, pH, pHsm and Markov Model detectors

Stide pH pHsm Markov Model Neural Network

traceroute 96.15% 96.27% 97.97% 71.92% 1.63%
restore 86.88% 87.55% 97.04% 44.52% 5.60%
samba 23.53% 25.84% 26.72% 15.92% 5.77%
ftpd 40.76% 33.08% 41.62% 12.76% 1.26%

189

9.1.2 Analysis of the Delays

Table 9.11 details the exploit delays for the best case attacks generated against Stide,

whereas Table 9.12 provides the attack delays for the corresponding exploits. The

results indicate that the attacks generated against Stide produce lower delays when

deployed against pH and pHsm, which is particularly apparent in the traceroute

attack delays in Tables 9.11 and 9.12. This is a fairly interesting result since GP did

not receive any delay feedback from Stide while evolving the attacks.

Table 9.11: Delays for the exploits generated against Stide

pH pHsm

traceroute 0.27 0.16
restore 9.99 17.81
samba 10.04 9.86
ftpd 0.03 0

Table 9.12: Delays for the attacks generated against Stide

pH pHsm

traceroute 0.8 0.69
restore 1.90E+38 2.16E+39
samba 7.95E+27 1.01E+21
ftpd 5.26E+30 4.59E+31

The exploit delays for the best case attacks generated against pH are provided in

Table 9.13. Moreover, Table 9.14 provides the attack delays for the corresponding

exploits. The results demonstrate that the exploit delays (Table 9.13) associated with

the attacks generated against pH are fairly low, however the corresponding attack

delays (Table 9.14) tend to be higher due to the anomalies in the preambles.

Table 9.15 details the exploit delays for the best case attacks against pHsm. As

with the findings for the anomaly rate analysis in the previous section, the attacks

generated against pHsm do not seem to generalize well to other detectors. The delays

observed over the exploits in Table 9.15 are fairly high as opposed to the delay analysis

190

Table 9.13: Delays for the exploits generated against pH

pH pHsm

traceroute 1.11 1
restore 9.94 11.11
samba 9.94 14.02
ftpd 9.94 23.84

Table 9.14: Delays for the attacks generated against pH

pH pHsm

traceroute 6.39E+06 3.52E+11
restore 1.90E+38 2.17E+39
samba 7.95E+27 1.95E+28
ftpd 5.26E+30 4.59E+31

of the attacks generated against Stide and pH, Tables 9.11 and 9.13, respectively.

Consequently the resulting attack delays are also high, as shown in Table 9.16.

Table 9.15: Delays for the exploits generated against pHsm

pH pHsm

traceroute 1.65E+35 1.65E+35
restore 15.08 3.94E+07
samba 3.88E+13 7.37E+12
ftpd 6.44E+23 9.86E+17

Table 9.17 shows the exploit delays of the best case attacks against Markov Model

detectors whereas Table 9.18 shows the attack delays corresponding to these exploits.

As with the findings of the anomaly rate analysis in the previous section, as far as the

delays are concerned, the attacks generated against Markov Model detectors do not

seem to generalize well to pH and pHsm detectors. As discussed in the anomaly rate

analysis in Section 9.1.1, given that the Markov Model utilizes only the last system

call as opposed to pH and pHsm utilizing the last 6 or more system calls, this is not

surprising.

191

Table 9.16: Delays for the attacks generated against pHsm

pH pHsm

traceroute 1.65E+35 1.65E+35
restore 1.90E+38 2.16E+39
samba 7.95E+27 1.95E+28
ftpd 5.26E+30 4.59E+31

Table 9.17: Delays for the exploits generated against the Markov Model detector

pH pHsm

traceroute 3.17E+34 1.10E+34
restore 6.29E+18 6.52E+23
samba 2.02E+19 2.00E+14
ftpd 9.06E+18 7.52E+12

Table 9.18: Delays for the attacks generated against the Markov Model detector

pH pHsm

traceroute 3.17E+34 1.10E+34
restore 1.90E+38 2.16E+39
samba 7.95E+27 1.95E+28
ftpd 5.26E+30 4.59E+31

192

Table 9.19 details the exploit delays of the best case attacks generated against the

Neural Network detector and Table 9.20 details the attack delays of the correspond-

ing exploits. In terms of delays, as with the attacks generated against Markov Model

detectors, the attacks generated against Neural Network detectors do not generalize

well to other detectors. As discussed in the anomaly rate analysis in Section 9.1.1,

this can be attributed to the fact that a Neural Network utilizes a different (com-

pressed) representation of the system call sequences and to the fact that it utilizes a

different detection methodology based upon the model which describes the frequency

distribution of system calls.

Table 9.19: Delays for the exploits generated against the Neural Network detector

pH pHsm

traceroute 2.22E+39 1.86E+39
restore 5.04E+38 5.66E+37
samba 9.26E+35 9.19E+34
ftpd 1.84E+28 3.46E+22

Table 9.20: Delays for the attacks generated against the Neural Network detector

pH pHsm

traceroute 2.23E+39 1.88E+39
restore 7.01E+38 2.41E+39
samba 9.48E+35 1.13E+35
ftpd 5.58E+30 4.60E+31

9.1.3 Discussion of the Analysis Results

In this analysis, the best attacks, which produced the smallest anomaly rates, against

each detector configuration were deployed against the other test detector configura-

tions. The purpose of such analysis is to determine whether mimicry attacks are

sensitive to changes in the target detector.

193

The results show that the attacks generated against Stide have a certain level

of success in being applicable to different detector configurations. This may be at-

tributed to the overspecialization of attacks when they are trained against a detector

with longer sliding window sizes or additional delay constraints. Furthermore, incor-

porating a schema mask into pH not only improves its resistance against mimicry

attacks but also reduces the applicability of the mimicry attacks to other detector

configurations.

The analysis results establish that the applicability of the mimicry attacks di-

minish when they are deployed against detectors which employ different detection

methodologies. This was apparent particularly when the attacks generated against

Markov Model and Neural Network detectors were deployed against the remaining

detector configurations. A future direction to the approach proposed in this thesis

would be to employ GP with Pareto ranking to evolve attacks which aim to reduce

the anomaly rate from not only a single detector but all five detectors.

9.2 Comparing with Mimicry Attacks in Previous Work

The main purpose of comparing the mimicry attacks provided in the relevant work

with the ones which the GP approach produced in Chapter 8 is to determine the

similarities and differences between the attacks provided in the previous work [34]

[105] which assume ‘white-box’ access to the detector and the GP approach, which

assumes a ‘black-box’ access. Therefore, the analysis in this section focuses on how

the search methodology affects the resulting attacks.

Giffin et al. [34] published the mimicry attack which they generated against Stide

on the traceroute application. Similarly, Wagner et al. [105] published the mimicry

attack which they generated on the ftpd application against pH. Although the attack

was generated against pH, the window size was set to 6 and the delay which pH

enforces on system calls was not employed in their experiments, therefore their pH

configuration works effectively like Stide. Both methodologies were ‘white-box,’ which

implies that they have full access to the internal knowledge of the detector such as

the normal database.

Additionally, the attacks on the traceroute and ftpd applications that produced

194

the minimum anomaly rates from the experiments in Chapter 8 were employed. For

each application, there exists five GP-generated attacks in which each minimizes the

anomaly rate for a detector (namely Stide, pH, pHsm, Markov Model and Neural

Network). Finally, the original attack obtained from the SecurityFocus website was

included in the experiments increasing the total attack count in the analysis to seven

for each application.

It is important to note that the ‘white-box’ attacks on traceroute [34] and ftpd

[105] were generated against detector configurations which were different from the

detector configurations employed in this thesis in terms of the training sets. Therefore,

the purpose of this analysis is not to make a direct comparison of the anomaly rates

or delays but to investigate the differences and similarities between ‘white-box’ and

‘black-box’ mimicry attacks.

9.2.1 Comparison with the ftpd Mimicry Attack [105]

The ftpd attack published by Wagner et al. [105] against Stide is provided in Figure

9.1. The ftpd attacks which GP generated against Stide, pH, pHsm, the Markov

Model and the Neural Network are provided in Figures B.4, B.9, B.15, B.23 and

B.32, respectively. Furthermore, the exploit lengths are detailed in Table 9.21. It

is apparent that an attack generated by the ‘white-box’ approach is shorter than

the attacks generated by the ‘black-box’ GP approach. Given that the ‘white-box’

exhaustive search detailed by Wagner et al. [105] searches for the existence of an

attack sequence starting in a depth-first manner without any consideration of the

attack lengths, the search ends when an attack sequence is found. In other words,

the exhaustive search employed would favour shorter attacks. On the other hand, the

code bloat property of GP implies the existence of system calls which do not affect the

success of the attack (i.e. effective NoOPs), hence the attacks tend to be longer, Table

9.21. This can be an advantage particularly if the preamble is long and anomalous.

That is to say, a longer exploit would allow the anomaly rate of the attack to decrease

over time, hence improving the chances of evading detection whereas short exploits

(even though they raise no alarms) may not succeed in minimizing the anomaly rate

of the attack.

195

read write close munmap sigprocmask wait4 sigprocmask sigaction alarm time stat read alarm

sigprocmask setreuid fstat getpid time write time getpid sigaction socketcall sigaction

close flock getpid lseek read kill lseek flock sigaction alarm time stat write open fstat

mmap read open fstat mmap read close munmap brk fcntl setregid open fcntl chroot chdir

setreuid lstat lstat lstat lstat open fcntl fstat lseek getdents fcntl fstat lseek getdents

close write time open fstat mmap read close munmap brk fcntl setregid open fcntl chroot

chdir setreuid lstat lstat lstat lstat open fcntl brk fstat lseek getdents lseek getdents

time stat write time open getpid sigaction socketcall sigaction umask sigaction alarm time

stat read alarm getrlimit pipe fork fcntl fstat mmap lseek close brk time getpid sigaction

socketcall sigaction chdir sigaction sigaction write munmap munmap munmap exit

Figure 9.1: The ftpd mimicry attack by Wagner et al. [105]

Table 9.21: Exploit lengths of the best ftpd mimicry exploits compared with the
mimicry exploit provided by Wagner et al. [105] and the original ftpd exploit [5]

Exploit Length

ftpd mimicry attack (Wagner et al. [105]) trained on Stide 135
ftpd attack (GP) trained on Stide 11
ftpd attack (GP) trained on pH 1000
ftpd attack (GP) trained on pHsm 994
ftpd attack (GP) trained on the Markov Model 1000
ftpd attack (GP) trained on the Neural Network 1000
original ftpd attack [5] 423

196

Table 9.22 details the attack anomaly rates obtained from deploying the ‘white-

box’ attack of Wagner et al. [105] and the GP-generated ‘black-box’ attacks against

the five detector configurations employed in the experiments for this thesis. The

anomaly rate for the original attack is detailed in Table 9.22 as well. Anomaly rates

for the ‘white-box’ attack are comparable to the anomaly rates produced by the ‘black-

box’ attacks, especially the attacks generated against Stide and pH. The anomaly rate

of the ‘black-box’ attack generated against Stide produced low anomaly rates since

the attacks were generated against the detector configuration which is employed in

this analysis as well. Given that the ftpd preamble is long and anomalous (Table

8.24), the resulting attacks (i.e. preamble + exploit) produce anomalies.

Table 9.22: Anomaly rates for the best ftpd mimicry attacks compared with the
mimicry attack provided by Wagner et al. [105] and the original ftpd attack [5]

Stide pH pHsm Markov
Model

Neural
Network

ftpd mimicry attack
(Wagner et al. [105])
trained on Stide

22.81% 25.52% 40.97% 8.38% 3.14%

ftpd attack (GP) trained
on Stide

19.30% 22.19% 38.21% 6.20% 2.69%

ftpd attack (GP) trained
on pH

20.60% 16.11% 28.18% 4.50% 3.16%

ftpd attack (GP) trained
on pHsm

41.39% 31.19% 38.43% 13.69% 3.64%

ftpd attack (GP) trained
on the Markov Model

41.48% 27.76% 35.01% 4.47% 3.92%

ftpd attack (GP) trained
on the Neural Network

40.76% 33.08% 41.62% 12.76% 1.26%

original ftpd attack [5] 22.78% 25.54% 20.27% 7.15% 6.91%

The exploit anomaly rates of the above-mentioned attacks are provided in Table

9.23. Since the attack by Wagner et al. [105] was generated against a different

configuration of Stide, the anomaly rate for the exploit is fairly high compared with

the ‘black-box’ attack generated against Stide. This supports the argument that the

training set selection is important in generating mimicry attacks [46].

197

Table 9.23: Anomaly rates for the best ftpd mimicry exploits compared with the
mimicry exploit provided by Wagner et al. [105] and the original ftpd exploit [5]

Stide pH pHsm Markov
Model

Neural
Network

ftpd mimicry attack
(Wagner et al. [105])
trained on Stide

95.38% 94.49% 99.14% 51.85% 53.06%

ftpd attack (GP) trained
on Stide

57.14% 33.33% 100.00% 18.18% 34.71%

ftpd attack (GP) trained
on pH

24.30% 0.10% 1.12% 0.20% 11.55%

ftpd attack (GP) trained
on pHsm

100.00% 55.12% 38.73% 33.57% 14.38%

ftpd attack (GP) trained
on the Markov Model

100.00% 42.50% 26.07% 0.10% 12.50%

ftpd attack (GP) trained
on the Neural Network

97.39% 61.83% 20.82% 30.07% 3.46%

original ftpd attack [5] 47.52% 47.85% 57.29% 13.65% 18.86%

The attack delays associated with the ‘white-box’ attack by Wagner et al [105],

GP-generated ‘black-box’ attacks and the original ftpd attack are provided in Table

9.24. Similarly, the exploit delays for these attacks are detailed in Table 9.25. The

results show that, in terms of the attack delay, the ‘white-box’ attack produces delays

comparable to the delays of the ‘black-box’ attacks generated against Stide and pH.

In this case, the fact that the ‘white-box’ exploit is shorter provides an advantage

in minimizing the delays. On the other hand, the exploit generated against pH is

fairly long (1000 system calls) but succeeds in minimizing the exploit delay below 10

seconds (Table 9.25).

9.2.2 Comparison with the traceroute Mimicry Attack [34]

Figure 9.2 provides the traceroute attack published by Giffin et al. [34]. The GP-

generated traceroute attacks against Stide, pH, pHsm, Markov Model and Neural

network detectors are provided in Figures B.1, B.5, B.10, B.17 and B.25, respectively.

198

Table 9.24: Delays for the best ftpd mimicry attacks compared with the mimicry
attack provided by Wagner et al. [105] and the original ftpd attack [5]

pH pHsm

ftpd mimicry attack (Wagner et
al. [105]) trained on Stide

3.93E+35 2.50E+37

ftpd attack (GP) trained on Stide 5.26E+30 4.59E+31
ftpd attack (GP) trained on pH 5.26E+30 4.59E+31
ftpd attack (GP) trained on
pHsm

5.26E+30 4.59E+31

ftpd attack (GP) trained on the
Markov Model

5.26E+30 4.59E+31

ftpd attack (GP) trained on the
Neural Network

5.58E+30 4.60E+31

original ftpd attack [5] 5.26E+30 4.89E+25

Table 9.25: Delays for the best ftpd mimicry exploits compared with the mimicry
exploit provided by Wagner et al. [105] and the original ftpd exploit [5]

pH pHsm

ftpd mimicry attack (Wagner et
al. [105]) trained on Stide

1.27 1.16

ftpd attack (GP) trained on Stide 0.03 0
ftpd attack (GP) trained on pH 9.94 23.84
ftpd attack (GP) trained on
pHsm

6.44E+23 9.86E+17

ftpd attack (GP) trained on the
Markov Model

9.06E+18 7.52E+12

ftpd attack (GP) trained on the
Neural Network

1.84E+28 3.46E+22

original ftpd attack [5] 3.78E+22 4.89E+25

199

Additionally, the exploit lengths are detailed in Table 9.26. Among the attacks uti-

lized in this analysis, the ‘white-box’ attack by Giffin et al. [34] has the shortest

length, which suggests that the search method employed by Giffin et al. [34] may

favour short attacks. Furthermore, the GP-generated attacks against Stide and pH

are fairly short as well, Table 9.26.

close munmap open fcntl64 fcntl64 fstat64 mmap2 read close munmap write

Figure 9.2: The traceroute mimicry attack by Giffin et al. [34]

Table 9.26: Exploit length for the best traceroute mimicry exploits compared with
the mimicry exploit provided by Giffin et al. [34] and the original traceroute exploit
[2]

Exploit Length

traceroute mimicry attack (Giffin et al. [34]) trained on Stide 11
traceroute attack (GP) trained on Stide 34
traceroute attack (GP) trained on pH 118
traceroute attack (GP) trained on pHsm 1000
traceroute attack (GP) trained on the Markov Model 957
traceroute attack (GP) trained on the Neural Network 1000
original traceroute attack [2] 261

The anomaly rates for the ‘white-box,’ ‘black-box’ and the original attacks are

detailed in Table 9.27. The anomaly rate for the corresponding exploits are detailed

in Table 9.28. Generally, the anomaly rates are minimized only for the detector for

which the attack was trained. For example, in terms of the anomaly rates for the

attacks against Stide, the two attacks which produced the lowest anomaly rates were

(1) the ‘black-box’ attack trained on Stide, with a 10.96% anomaly rate and (2) the

‘white-box’ attack trained on Stide with a 20.00% anomaly rate. This indicates that

the traceroute application is sensitive to the training set and detector configurations.

Similarly, the anomaly rates for the exploits in Table 9.28 indicate that the anomaly

rate of the exploit is sensitive to the detector against which the attack is trained. This

suggests that the mimicry attacks against traceroute are not as widely applicable as

200

the mimicry attacks against ftpd and attackers may need to craft different exploits

for different target detectors.

Table 9.27: Anomaly rates for the best traceroute mimicry attacks compared with
the mimicry attack provided by Giffin et al. [34] and the original traceroute attack
[2]

Stide pH pHsm Markov
Model

Neural
Network

traceroute mimicry at-
tack (Giffin et al. [34])
trained on Stide

20.00% 36.84% 67.39% 6.15% 100.00%

traceroute attack (GP)
trained on Stide

10.96% 33.75% 75.36% 7.95% 15.89%

traceroute attack (GP)
trained on pH

73.25% 18.29% 30.72% 8.14% 44.95%

traceroute attack (GP)
trained on pHsm

96.15% 83.27% 85.12% 14.42% 100.00%

traceroute attack (GP)
trained on the Markov
Model

95.98% 82.65% 83.97% 0.20% 100.00%

traceroute attack (GP)
trained on the Neural
Network

96.15% 96.27% 97.97% 71.92% 1.63%

original traceroute attack 61.26% 66.27% 81.79% 38.78% 31.19%

The delays associated with the traceroute attacks are given in Table 9.29, whereas

Table 9.30 details the delays with the corresponding exploits. The ‘white-box’ attack

against Stide and the ‘black-box’ attacks against Stide and pH produced the least

amount of delays both in terms of the attack and exploit delay. Furthermore, the

delay analysis shows that the ‘white-box’ attack produced the fewest delays both for

the attack and the exploit. Although the anomaly rate for the ‘white-box’ exploit was

fairly high (Table 9.28), the short delay for the ‘white-box’ attack could be attributed

to the short attack length (Table 9.26).

201

Table 9.28: Anomaly rates for the best traceroute mimicry exploits compared with
the mimicry exploit provided by Giffin et al. [34] and the original traceroute exploit
[2]

Stide pH pHsm Markov
Model

Neural
Network

traceroute mimicry at-
tack (Giffin et al. [34])
trained on Stide

100.00% 100.00% 100.00% 16.67% 100.00%

traceroute attack (GP)
trained on Stide

16.67% 29.63% 81.25% 14.29% 37.24%

traceroute attack (GP)
trained on pH

98.25% 11.71% 13.00% 10.92% 73.03%

traceroute attack (GP)
trained on pHsm

100.00% 86.10% 86.15% 15.08% 100.00%

traceroute attack (GP)
trained on the Markov
Model

100.00% 85.26% 84.56% 0.10% 100.00%

traceroute attack (GP)
trained on the Neural
Network

100.00% 99.50% 99.29% 75.62% 2.47%

original traceroute attack 71.48% 73.91% 83.06% 47.89% 70.21%

202

Table 9.29: Delays for the best traceroute mimicry attacks compared with the mimicry
attack provided by Giffin et al. [34] and the original traceroute attack [2]

pH pHsm

traceroute mimicry attack (Giffin
et al. [34]) trained on Stide

0.57 0.46

traceroute attack (GP) trained on
Stide

0.8 0.69

traceroute attack (GP) trained on
pH

6.39E+06 3.52E+11

traceroute attack (GP) trained on
pHsm

1.65E+35 1.65E+35

traceroute attack (GP) trained on
the Markov Model

3.17E+34 1.10E+34

traceroute attack (GP) trained on
the Neural Network

2.23E+39 1.88E+39

original traceroute attack 4.39E+35 8.51E+35

Table 9.30: Delays for the best traceroute mimicry exploits compared with the
mimicry exploit provided by Giffin et al. [34] and the original traceroute exploit
[2]

pH pHsm

traceroute mimicry attack (Giffin
et al. [34]) trained on Stide

0.04 0

traceroute attack (GP) trained on
Stide

0.27 0.16

traceroute attack (GP) trained on
pH

1.11 1

traceroute attack (GP) trained on
pHsm

1.65E+35 1.65E+35

traceroute attack (GP) trained on
the Markov Model

3.17E+34 1.10E+34

traceroute attack (GP) trained on
the Neural Network

2.22E+39 1.86E+39

original traceroute attack 4.39E+35 8.51E+35

203

9.2.3 Discussion of the Analysis Results

In this analysis, a comparison of the published ‘white-box’ attacks [105] [34] was

made with the GP-generated ‘black-box’ attacks. Each attack was deployed against

different detector configurations and the results were provided in terms of anomaly

rates, delays and exploit lengths. Mimicry attacks generated by GP provide anomaly

rates comparable to the anomaly rates of ‘white-box’ attacks although the access to

the detector is limited to the anomaly rate alone. Such a ‘black-box’ assumption is

particularly suitable if the attacker does not posses internal knowledge of the detector.

The analysis revealed that mimicry attacks are sensitive to detector configurations

and to the target detector upon which they were trained. Therefore, the 0% exploits

reported by Wagner et al. [105] and Giffin et al. [34] produced fairly high anomaly

rates in this analysis. Furthermore, among the GP-generated ‘black-box’ attacks,

the results indicated that the anomaly rate for the exploit can vary substantially

depending upon the detector configuration against which the attack is deployed.

The search methodology employed in ‘white-box’ approaches involve an exhaustive

search on the normal database of the detector until an attack is found, therefore the

attack lengths tend to be shorter than the length of the attacks generated by the

‘black-box’ GP approach. Although this may provide some advantage in reducing

delay, it is a disadvantage since a longer exploit can help in minimizing the anomaly

rate of the attack, particularly if the preamble is long and anomalous.

In terms of investigating the difficulty of deploying mimicry attacks, the results

indicate that the attacks are fairly sensitive to detector or training set changes [46].

The findings of the comparison experiments support and expand upon the findings

of the analysis provided in Section 9.1.

The ‘white-box’ mimicry attacks [105] [34] employed in this section were not

trained on the detector configurations employed in this thesis. Therefore, Section

9.3 continues the analysis by developing ‘white-box’ attacks against the anomaly de-

tectors employed in this thesis. Furthermore, the methodologies for generating ‘white-

box’ attacks are discussed as well with the purpose of demonstrating that ‘white-box’

approaches do not generalize over numerous detectors in terms of applicability. In

204

other words, for each detector to be tested, the attacker needs to develop a ‘white-

box’ methodology which is suitable for the internal knowledge and data structures of

the detector.

9.3 Comparison of ‘White-Box’ Attacks

As discussed in Section 8, the approach taken in this thesis to generate mimicry

attacks is a ‘black-box’ one in which the attacker has limited access to the detector.

Conversely, previous work on mimicry attack generation [105] [99], [96] [32] [56] [34]

assumed that the access to the detector was ‘white-box,’ which implies that the

attacker can make use of the internal data structures of the detector or any other

knowledge regarding the operation of the detector.

The analysis in Section 9.2, compared the attacks generated with the previous

‘white-box’ approaches. However, as discussed in Section 9.2, since the training sets

utilized to generate the ‘white-box’ attacks [105] [34] differ from the training sets

utilized in this work, a direct comparison could not be made. The analysis in this

section implements ‘white-box’ approaches to generate mimicry attacks against the

anomaly detectors utilized in this thesis in order to make a direct comparison between

the two approaches.

The ‘black-box’ methodology proposed in this thesis utilizes the feedback from

the detector without using any internal knowledge. This implies that it can be ap-

plied to numerous anomaly detectors as long as the detector provides a feedback such

as anomaly rate and delay. Conversely, the ‘white-box’ assumption requires a fo-

cused and exhaustive search against the detection mechanism and can employ internal

knowledge such as the training data, normal database, or the detection methodology

utilized. Therefore, for each detector, the attack generation methodology needs to

be revised to fit the characteristics and constraints of the detection mechanism. For

example, mimicry attacks generated against a detector which monitors the frequency

distribution of system calls may not succeed against a detector which monitors not

only the frequencies but also the sequences of system calls.

205

To this end, the ‘white-box’ mimicry attack generation methodologies imple-

mented against each anomaly detector are discussed separately in the following sub-

sections. As with the comparison experiments in Section 9.1, each mimicry attack

is tested against not only the anomaly detector for which it was created, but also

against the remaining anomaly detectors.

The exploit lengths of the ‘white-box’ exploits are detailed in Table 9.31, which

can be compared with the exploit lengths of the ‘black-box’ exploits detailed in Table

8.20.

Table 9.31: Lengths of the exploits generated against five anomaly detectors in terms
of system calls

Stide pH pHsm Markov Model Neural Network

traceroute 77 38 158 97 736
restore 92 60 60 95 167207
samba 213 91 90 124 65648
ftpd 135 43 54 106 334252

9.3.1 The ‘White-Box’ Attacks Against Stide

Wagner et al. [105] employed language theory to formulate two sets: a set of malicious

sequences and a set of normal behaviour sequences. If the intersection of these sets is

not an empty set, it implies that a mimicry attack can be constructed. On the other

hand, Tan et al. [96] viewed the problem as increasing the length of the malicious

sequence beyond the sliding window length, which means that the sliding window

patterns generated on the malicious sequence would be within normal behaviour.

The common trait of both methods is to generate a mimicry attack which does not

contain a sequence which will create an anomaly. In other words, the sliding window

patterns which the mimicry attack produces should be in the normal database of the

detector.

Sharing this goal, the ‘white-box’ mimicry attack generation developed for Stide

in this work takes the Stide normal database (i.e. the sequences of system calls) and

builds a connectivity graph where each pattern in the normal database is represented

206

as a node. A connection between nodes A and B means that node (i.e. sliding

window pattern) B can follow node (i.e. sliding window pattern) A. The search

was implemented as a depth-first graph search where the search terminates when the

resulting pattern contains the malicious system calls (in this case open - write - close).

Results

The anomaly rates for the exploits generated using this ‘white-box’ approach are

detailed in Table 9.32, whereas the anomaly rates for the corresponding attacks are

provided in Table 9.33. Clearly, exploits achieve a 0% exploit anomaly rate against the

detector upon which they were trained. Furthermore, the restore exploit achieved a

0% exploit anomaly rate against all the anomaly detectors except the Neural Network

detector. This suggests that the exploit employs a sequence which exists in the normal

data structure of Stide, pH, pHsm and the Markov Model. Since the Neural Network

employs system call frequency distributions, the 100% anomaly rate can be attributed

to the disparity in the system call frequency distribution between the exploit and the

normal behaviour database of the Neural Network detector.

Table 9.32: Anomaly rates for the exploits generated against Stide by using the
‘white-box’ approach, tested against the five anomaly detectors utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 0.00% 5.80% 18.97% 0.00% 100.00%
restore 0.00% 0.00% 0.00% 0.00% 100.00%
samba 0.00% 4.39% 19.07% 0.00% 100.00%
ftpd 0.00% 7.87% 14.66% 0.00% 100.00%

Although the exploit produced no anomalies, it is important to emphasize that

the anomaly rates of the overall attacks produced anomalies and are comparable to

the anomaly rates of the attacks generated by the ‘black-box’ GP approach (Table

9.2). In the case of the restore attack, although the exploit raised no alarms, the

resulting attack produced anomaly rates greater than the attack generated by the

‘black-box’ GP approach, Table 9.2. This is due to the fact that ‘white-box’ attacks

are generally more concise than ‘black-box’ attacks generated by GP, Table 9.31.

207

Table 9.33: Anomaly rates for the attacks generated against Stide by using the ‘white-
box’ approach, tested against the five anomaly detectors utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 2.61% 18.85% 36.04% 1.54% 100.00%
restore 73.46% 76.78% 86.23% 33.10% 100.00%
samba 3.51% 9.87% 9.70% 6.45% 100.00%
ftpd 18.29% 21.51% 14.73% 5.84% 100.00%

The delays associated with the exploits generated by the ‘white-box’ methodology

are detailed in Table 9.34. Similarly, the delays associated with the ‘white-box’ attacks

are provided in Table 9.35. The delays show that although the exploits do not produce

substantial delays, the anomalies in the preambles increase the delays substantially

except for the traceroute application where the preamble is short.

Table 9.34: Delays for the exploits generated against Stide by using the ‘white-box’
approach

pH pHsm

traceroute 0.69 0.58
restore 0.84 0.73
samba 246.86 5.00E+10
ftpd 1.27 1.16

Table 9.35: Delays for the attacks generated against Stide by using the ‘white-box’
approach

pH pHsm

traceroute 1.22 1.11
restore 1.90E+38 4.33E+38
samba 7.95E+27 1.01E+21
ftpd 5.26E+30 7.84E+17

208

9.3.2 The ‘White-Box’ Attacks Against pH

Wagner et al. [105] employed their ‘white-box’ mimicry attack generation method-

ology against pH but the way pH was utilized was the same as for Stide (i.e. a

sliding window of 6 was employed). pH stored the patterns in the form of look-ahead

pairs, which means the sliding window patterns were not stored directly, but in a

compressed form. As Inoue et al. [38] discussed, the database format may make pH

more susceptible to mimicry attacks than Stide. As a simple example, consider that

both Stide and pH are being trained on the sequence in Table 9.36, where the right

hand side of the sequence is the more recent.

Table 9.36: An example sequence for which Stide and pH are trained

2 2 1 3 2 2 1

Given that the sliding window length of both detectors for 4, the Stide normal

database stores the sliding window patterns encountered in the training set, Table

9.37. While generating attacks against this Stide configuration, there are four sliding

window patterns (or length 4) which will not generate any anomalies.

Table 9.37: The Stide normal database which was trained on the sequence provided
in Table 9.36

Current Position 1 Position 2 Position 3

pattern 1 1 2 2 3
pattern 2 2 2 3 1
pattern 3 2 3 1 2
pattern 4 3 1 2 2

The pH normal database – although originally stored as look-ahead pairs – can be

represented as a table as well. The main difference between the Stide and pH normal

databases is that sequences 2 2 3 1 and 2 3 1 2 are compressed into one row in Table

9.38.

An exhaustive search of the pH normal database reveals that, given the same

training set and sliding window lengths, pH allows more sequences than Stide does,

209

Table 9.38: The pH normal database, which was trained on the sequence provided in
Table 9.36

Current Position 1 Position 2 Position 3

1 {2} {2} {3}
2 {2, 3} {3, 1} {1, 2}
3 {1} {2} {2}

Figure 9.3. This condition is likely to be magnified when longer sliding windows

are employed. In Figure 9.3, the sequences which Stide allows are printed in bold.

Although pH produces a larger set from which the mimicry attacks are built, it

also expands the search space which the ‘white-box’ methodology needs to cover.

Therefore, this attribute can work in attacker’s favour (by providing a more extensive

normal database) or to his/her disadvantage (by increasing the computational cost of

the search). This research, however, does not focus on the impacts of this situation

on ‘white-box’ methodologies. The main purpose of the analysis in this section is

to generate ‘white-box’ attacks to compare against the ‘black-box’ attacks which are

generated by the approach proposed in this thesis.

1 2 2 3 2 3 3 1
2 2 3 1 2 3 3 2
2 2 3 2 2 3 1 1
2 2 1 1 2 3 1 2
2 2 1 2 3 1 2 2

Figure 9.3: The list of sequences of length 4 permitted by the pH normal database

As with the methodology proposed by Wagner et al. [105], the methodology

developed against pH in this thesis exploits the use of sliding windows in pH and

builds attacks from the sliding window patterns encountered during training. Simply

put, the approach developed by Stide in Section 9.3.1 is utilized with a sliding window

length of 9. This is an acceptable approach since a ‘white-box’ approach implies that

the attacker can utilize all and any knowledge about the detector, including the

detection methodology. This reduces the search space size of a ‘white-box’ search,

hence shortening the time it takes to find an attack.

210

Results

The anomaly rates for the exploits generated by the ‘white-box’ approach are provided

in Table 9.39 and the anomaly rates for the corresponding attacks are detailed in

Table 9.40. As with the results against Stide, the ‘white-box’ exploits produced a 0%

anomaly rate against the detector for which they were trained. Furthermore, when

the exploits were tested against other anomaly detectors, the anomaly rate remained

low. Therefore, the exploits generated against pH generalize well to other detectors

(with the exception of Neural Network detectors which employ system call frequency

distributions).

Table 9.39: Anomaly rates for the exploits generated against pH by using the ‘white-
box’ approach, tested against the five anomaly detectors utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 0.00% 0.00% 5.26% 0.00% 100.00%
restore 0.00% 0.00% 0.00% 0.00% 100.00%
samba 0.00% 0.00% 4.17% 0.00% 100.00%
ftpd 0.00% 0.00% 0.00% 0.00% 100.00%

Compared with the ‘black-box’ attacks generated by GP in Table 9.4 , the at-

tack anomaly rates for the ‘white-box’ attacks in Table 9.40, perform better against

numerous detector configurations (e.g. the traceroute attack against Stide) but the

‘black-box’ attacks perform better against other configurations such as the restore

attack against all anomaly detectors. This shows that although the ‘white-box’ ap-

proach produces lower anomaly rates on exploits, when the anomaly rates for the

attacks are calculated, ‘black-box’ attacks produce comparable or better anomaly

rates by utilizing more system calls to hide the true intention of the attack.

The delays associated with the exploits are detailed in Table 9.41 whereas the

delays associated with the corresponding attacks are detailed in Table 9.42. As with

the delays reported for the ‘white-box’ attacks generated against Stide, the exploit

delays are fairly short (less than one second in all cases) but the corresponding attack

delays are substantially long due to the length and anomalous preambles, with the

exception of traceroute.

211

Table 9.40: Anomaly rates for the attacks generated against pH by using the ‘white-
box’ approach, tested against the five anomaly detectors utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 3.95% 22.89% 43.06% 2.20% 100.00%
restore 75.03% 78.31% 87.97% 33.79% 100.00%
samba 3.59% 9.94% 9.14% 6.65% 100.00%
ftpd 18.92% 21.88% 14.49% 6.05% 100.00%

Table 9.41: Delays for the exploits generated against pH by using the ‘white-box’
approach

pH pHsm

traceroute 0 0.19
restore 0 0
samba 0 0.72
ftpd 0 0

Table 9.42: Delays for the attacks generated against pH by using the ‘white-box’
approach

pH pHsm

traceroute 0.83 0.72
restore 1.90E+38 4.33E+38
samba 7.95E+27 1.01E+21
ftpd 5.26E+30 7.84E+17

212

9.3.3 The ‘White-Box’ Attacks Against pHsm

Although, as of this writing, pHsm has not been employed in previous mimicry attack

research, the methodology discussed in Section 9.3.1 applies to pHsm. Two attributes

of pHsm differentiate it from Stide and pH: (1) the sliding window length is 20 and

(2) a schema mask is applied to the sliding window. However, given a ‘white-box’

access to the detector, it is realistic to assume that the attacker knows both the

sliding window length and the schema mask. Thus, the task can be formulated as

generating a mimicry attack against a detector with a sliding window of 20 system

calls. This implies that the methodology detailed in Section 9.3.1 is utilized with

a sliding window length of 20. If the attack does not raise any alarms with this

condition, the application of a schema mask will not generate any anomalies since the

purpose of the schema mask is to select 9 values from a sliding window of length 20.

Results

The anomaly rates for the exploits generated by the ‘white-box’ approach against

pHsm are detailed in Table 9.43 and the anomaly rates for the corresponding ‘white-

box’ attacks are detailed in Table 9.44. Compared with the ‘white-box’ exploit

anomaly rates against Stide and pH (Tables 9.32 and 9.39, respectively), the ‘white-

box’ exploits generated against pHsm produced 0% exploit anomaly rates for all the

anomaly detectors, except the Neural Network detector. A possible reason for the 0%

anomaly rates is the fact that pHsm utilizes longer sliding window lengths for detec-

tion, therefore, if the attack can evade pHsm, it can also evade other detectors with

shorter sliding window lengths. This also implies that from an attacker’s perspective,

overestimating the sliding window length of the detector is better than underestimat-

ing it since an attack which evades a detector with a longer sliding window length

is likely to evade the detectors with shorter sliding window lengths, but the opposite

may not hold true (as discussed in the next section).

A comparison of attack anomaly rates between the attacks generated by the

‘white-box’ method (Table 9.44) and ‘black-box’ method (Table 9.6) shows that the

‘white-box’ approach produces lower anomaly rates in most configurations, although

213

Table 9.43: Anomaly rates for the exploits generated against pHsm by using the
‘white-box’ approach, tested against the five anomaly detectors utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 0.00% 0.00% 0.00% 0.00% 100.00%
restore 0.00% 0.00% 0.00% 0.00% 100.00%
samba 0.00% 0.00% 0.00% 0.00% 100.00%
ftpd 0.00% 0.00% 0.00% 0.00% 100.00%

in some configurations, such as the restore attack, the anomaly rates are compara-

ble. It is important to emphasize that anomaly rates under a ‘white-box’ assumption

makes use of all the information available to the attacker (sliding window length,

schema mask employed, the normal database) whereas the ‘black-box’ approach suc-

ceeds in producing comparable results using only the anomaly rate as a guide for the

search. This shows that although the ‘black-box’ assumption presents a more diffi-

cult problem, it can still provide solutions which are comparable to the ‘white-box’

scenarios.

Table 9.44: Anomaly rates for the attacks generated against pHsm by using the
‘white-box’ approach, tested against the five anomaly detectors utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 1.53% 9.36% 15.10% 0.95% 69.03%
restore 75.03% 78.31% 87.97% 33.79% 100.00%
samba 3.59% 9.95% 9.06% 6.65% 100.00%
ftpd 18.84% 21.79% 14.39% 6.02% 35.49%

214

The delays associated with the ‘white-box’ exploits generated against pHsm are

detailed in Table 9.45 and the delays associated with the corresponding attacks are

detailed in Table 9.46. In the experiments discussed in this thesis, the ‘white-box’

mimicry attack generation against pHsm is the only methodology, which produces

no delays on the exploits. Since the exploit anomaly rate is 0% in all cases (except

against the Neural Network detector), the associated delays are zero as well. As with

the delays associated with ‘white-box’ attacks against Stide and pH, addition of the

preamble introduces substantial delays.

Table 9.45: Delays for the exploits generated against pHsm by using the ‘white-box’
approach

pH pHsm

traceroute 0 0
restore 0 0
samba 0 0
ftpd 0 0

Table 9.46: Delays for the attacks generated against pHsm by using the ‘white-box’
approach

pH pHsm

traceroute 99659.7 4.85E+07
restore 1.90E+38 4.33E+38
samba 7.95E+27 1.01E+21
ftpd 5.26E+30 7.84E+17

215

9.3.4 The ‘White-Box’ Attacks Against the Markov Model

Tan et al. [97] utilized a methodology to generate mimicry attacks against a Markov

Model detector. The main focus of their experiments was to determine the operational

limits of Stide, therefore the attacks were generated against Stide and tested against

both Stide and the Markov model detector.

Given that the Markov Model detector employed in this thesis is a first order

model, Section 4.2.4, the current state (i.e. the system call) depends solely upon

the previous system call. This differs from Stide, pH and pHsm, where the current

state depends upon a history of previous system calls. The ‘white-box’ search on the

Markov Model can be formulated as a graph search where each system call is a state.

States A and B are connected in the graph if the detector encounters any transitions

from A to B in the training data. The search for mimicry attacks now boils down to

a depth-first search on the graph. The search terminates if the generated sequence

contains the malicious sequence (i.e. open - write - close).

Results

The anomaly rates for the ‘white-box’ exploits are detailed in Table 9.47 and the

anomaly rates for the attacks are detailed in Table 9.48. Although the anomaly

rates for the exploits are 0% when the exploits are tested against the Markov Model

detector, the exploit anomaly rates against the other detectors are fairly high. As

discussed in the previous section, the exploits against pHsm were generated against

a longer sliding window. Conversely, a first order Markov Model can be implemented

as Stide with sliding window of 2. In other words, the normal database would record

only the current system call and the previous system call, as opposed to recording

a history of previous system calls. From that perspective, the exploits generated

against a sliding window of size 2 do not generalize to the other detectors (namely,

Stide, pH and pHsm) which employ longer sliding window patterns. Therefore, this

indicates that, from an attacker’s perspective, it is better to overestimate the sliding

window length than to underestimate it.

As with the ‘black-box’ attacks (Table 9.8), the anomaly rates for the ‘white-

box’ attacks (Table 9.48) are substantially higher when they are tested against other

216

Table 9.47: Anomaly rates for the exploits generated against the Markov Model
detector by using the ‘white-box’ approach, tested against the five anomaly detectors
utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 96.74% 96.63% 100.00% 0.00% 100.00%
restore 97.78% 75.86% 80.26% 0.00% 100.00%
samba 99.16% 81.90% 81.90% 0.00% 100.00%
ftpd 98.02% 90.82% 91.95% 0.00% 100.00%

detectors. The anomaly rates for the ‘black-box’ attacks are lower – particularly

against the Neural Network detector, which suggests that, comparing the attacks

against Markov Model detectors, ‘black-box’ attacks are more successful producing

system call frequency distributions which are closer to the training than the ‘white-

box’ attacks.

Table 9.48: Anomaly rates for the attacks generated against the Markov Model de-
tector by using the ‘white-box’ approach, tested against the five anomaly detectors
utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 68.15% 73.94% 87.02% 1.33% 100.00%
restore 79.06% 80.83% 90.35% 33.04% 100.00%
samba 6.54% 12.24% 11.27% 6.60% 100.00%
ftpd 22.13% 24.65% 17.25% 5.91% 40.29%

The delays associated with the ‘white-box’ exploits generated against the Markov

Model detector are provided in Table 9.49 and the delays associated with the corre-

sponding ‘white-box’ attacks are detailed in Table 9.50. The exploits do not cause

substantial delays but the resulting attacks are delayed by more than 1029 seconds,

which means the attacks are effectively ‘frozen’ before the exploit is deployed.

9.3.5 The ‘White-Box’ Attacks Against the Neural Network

The Neural Network detector differs from the rest of the anomaly detectors utilized in

this thesis since the detection is based upon the frequency distribution of system calls

217

Table 9.49: Delays for the exploits generated against the Markov Model detector by
using the ‘white-box’ approach

pH pHsm

traceroute 0.89 0.78
restore 0.87 0.76
samba 1.16 1.05
ftpd 0.98 0.87

Table 9.50: Delays for the attacks generated against the Markov Model detector by
using the ‘white-box’ approach

pH pHsm

traceroute 8.11E+29 3.89E+32
restore 1.90E+38 4.35E+38
samba 1.32E+32 1.30E+32
ftpd 5.24E+32 2.60E+31

as opposed to the sequence of system calls. Such a representation is more compressed

than the sequence-based methods, which means the attackers do not have to worry

about determining sequences which contain malicious system calls. For example,

from the perspective of the Neural Network detector which monitors the frequency

distribution of system calls, sequence 2 2 1 3 2 2 1 is equivalent to 1 1 2 2 2 2

3. Furthermore, a mimicry attack can evade detectors which monitor system call

sequences by repeating patterns which are in the normal database (e.g. the GP-

generated traceroute mimicry attack against Stide in Figure B.1). However, such an

approach may not work for a detector monitoring system call frequencies because

although the sequences employed in the mimicry attack are in the normal database,

the resulting frequency distribution may deviate from the frequency distributions

encountered in the training set.

The ‘white-box’ methodology developed against the Neural Network detector anal-

yses the frequency distributions in the training sets and generates mimicry attacks to

match the frequency distribution. Again, this conforms to a ‘white-box’ assumption

since the attacker can use internal knowledge including the training sets. Given that

218

the detector does not employ sequence information, the methodology arranges the

ordering of the system calls randomly (i.e. as long as the frequency distributions

match and the malicious open-write-close sequence exists, the ‘white-box’ attacker

does not care about the ordering).

Results

The anomaly rates for the ‘white-box’ exploits generated against the Neural Network

detector are detailed in Table 9.51 and the anomaly rates for the corresponding attacks

are detailed in Table 9.52. The anomaly rates for the ‘white-box’ exploits are fairly

low when tested against the Neural Network detector, but as opposed to the other

detectors, the anomaly rates for the exploits are above zero even for the training

detector. This is due to the fact that, in case of detectors which monitor sequences

of system calls, if the ‘white-box’ attack produces sequences which are in the normal

database of the detectors, it will remain undetected. However, in case of the Neural

Network detector, the main purpose of employing a Neural Network on the frequency

distribution of system calls is to develop a model which ‘approximates’ the frequency

distributions encountered in the training set. Such an ‘approximation’ implies that a

Neural Network provides a generic model which captures the generic characteristics of

frequency distributions. Although this may raise some false positive concerns, it does

increase the sensitivity of the detector to slight changes in normal behaviour, which

has the potential to make it difficult for the attackers to generate mimicry attacks.

Table 9.51: Anomaly rates for the exploits generated against the Neural Network
detector by using the ‘white-box’ approach, tested against the five anomaly detectors
utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 100.00% 100.00% 71.41% 66.58% 1.87%
restore 11.17% 0.07% 0.07% 0.03% 0.22%
samba 85.67% 42.91% 42.91% 42.80% 2.38%
ftpd 74.78% 49.90% 0.17% 24.96% 0.46%

When the attack anomaly rates of the ‘black-box’ attacks against the Neural

Network detector in Table 9.10 are compared with the ‘white-box’ attacks in Table

219

9.52, it is evident that the ‘white-box’ attacks produce low anomaly rates on the

restore application. This is due to the facts that: (1) 88% of the system calls executed

by restore are the write system call, therefore the sequence for such an attack is likely

to contain blocks of the write system call, and (2) the restore exploit contains 167207

system calls (Table 9.31), which reduces the effect of anomalies from the preamble.

Table 9.52: Anomaly rates for the attacks generated against the Neural Network
detector by using the ‘white-box’ approach, tested against the five anomaly detectors
utilized in this work

Stide pH pHsm Markov Model Neural Network

traceroute 94.83% 95.52% 71.04% 62.36% 3.84%
restore 11.74% 0.78% 0.86% 0.34% 0.27%
samba 81.14% 41.09% 41.04% 40.79% 3.12%
ftpd 74.35% 49.68% 0.28% 24.82% 0.95%

Delays associated with the ‘white-box’ exploits generated against the Neural Net-

work detector are detailed in Table 9.53 whereas the delays associated with the cor-

responding ‘white-box’ attacks are provided in Table 9.54. Both the exploit and the

attack delays are high for the ‘white-box’ attacks against the Neural Network. In this

case, the lack of ordering produces clustered anomalies, which increases delays.

Table 9.53: Delays for the exploits generated against the Neural Network detector by
using the ‘white-box’ approach

pH pHsm

traceroute 2.05E+39 3.82E+38
restore 4.84E+22 6.19E+24
samba 9.49E+40 9.49E+40
ftpd 5.66E+41 7.32E+38

220

Table 9.54: Delays for the attacks generated against the Neural Network detector by
using the ‘white-box’ approach

pH pHsm

traceroute 2.07E+39 4.40E+38
restore 1.90E+38 4.33E+38
samba 9.49E+40 9.49E+40
ftpd 5.66E+41 7.32E+38

221

9.3.6 Discussion of the ‘White-Box’ Search Space Size

Based upon the search space size calculations employed for the ‘black-box’ approach in

Section 8.2.4, two factors determine search space size: attack length and the number

of available system calls. Given an attack which has l system calls and n distinct

system calls, the total number of attacks of length l will be nl. Although the number

of system calls which an operating system implements varies, 223 system calls were

encountered in the thesis experiments. Assuming that there are 223 system calls

available to build an attack of length 1000, which is the same length utilized in the

‘black-box’ search space discussion, the search space size will be 2231000, which is over

102341 for all four vulnerable applications and for all the anomaly detectors employed

in this thesis.

Compared with the ‘black-box’ search space size in Section 8.2.4, which is 101301,

the ‘white-box’ search space is considerably larger. An exhaustive search performed

on this extensive search space would be infeasible. Thus, a common aspect of ‘white-

box’ mimicry attack research [105] [99] [96] [98] [32] [56] [34] is to employ ‘white-

box’ information to reduce the search space size so that an exhaustive search can be

performed.

Previous work on mimicry attacks employed various ‘white-box’ information such

as patterns in the normal databases [105] [99] [96] [98] [32], detector parameters [96]

[98] [32] and source code [56] to reduce the search space size.

For example, Wagner et al. [105] generated an automaton based upon the normal

behaviour database and performed a depth-first search on the automaton. They state

that their exhaustive search runs in less than a second [105] which indicates that the

search space defined by their methodology is fairly small. As with Wagner et al.

[105], Gao et al. [32] built an automaton as well – consisting of the normal behaviour

database, program counter values and the set of return addresses on which the ex-

haustive search was conducted. On the other hand, Tan generated mimicry attacks

manually based upon the normal behaviour database information of the detector [96]

[99] or upon the training set of the detector [98]. Based upon the foreign sequence

lengths reported in their experiments [99] [96] [98], it is evident that their exhaustive

search focused on attacks of length 20 or shorter, which puts the estimation of their

222

search space around 22320, which is approximately 1046. Kruegel et al. [56] employed

symbolic execution and reduced the application state to a polynomial by employing

the source code and return address information. If the resulting polynomial has a

solution, it implies that a mimicry attack exists. Giffin et al. [34] employed ‘white-

box’ information such as the threat, program and operating system models to create

abstractions (based upon their interpretation of the systems employed), on which

model checking was performed.

In all the above mentioned work [105] [99] [96] [98] [32] [56] [34], ‘white-box’

knowledge from the detector was employed to reduce the search space size so that an

exhaustive search could be conducted. On the other hand, the ‘black-box’ approach

proposed in this thesis does not make use of any ‘white-box’ information, hence it

works on a search space larger than the previous ‘white-box’ approaches [105] [99] [96]

[98] [32] [56] [34]. Although this represents a more difficult problem from a machine

learning perspective, the proposed approach succeeds in generating mimicry attacks

which are comparable to the ‘white-box’ mimicry attacks, as demonstrated by the

results in Sections 9.1 for ‘black-box’ attacks and 9.3 for ‘white-box’ attacks.

Moreover, a disadvantage of the ‘white-box’ approaches is that the search is de-

pendent upon the availability of the needed ‘white-box’ information. For example,

if the search requires access to the normal database of the detector, it cannot be

applied to a scenario in which such information is not available. Furthermore, as

discussed in Section 9.3, the ‘white-box’ search methodologies need to be tailored for

each detector. For example, a ‘white-box’ methodology which employs the normal

database of the Stide detector cannot be applied directly to pH, pHsm and Markov

Model detectors. It has to be modified substantially to make it compatible with the

data structures of the normal databases of those detectors. However, it cannot be

applied to a Neural Network detector at all since not only is the data structure of the

normal database (i.e. consisting of weight values) incompatible but also, the detector

employs system call frequencies as opposed to sequences to perform detection. On the

other hand, the proposed ‘black-box’ approach is employed against all five anomaly

detectors without any changes in search methodology since the only requirement is

suitable detection feedback (such as an anomaly rate) from the detector.

223

9.3.7 Discussion of the Analysis Results

In Section 9.1, the ‘black-box’ attacks generated by GP were deployed against multiple

detectors to determine how the anomaly rate changes when the target detector is

changed. In Section 9.2, two mimicry attacks which were published in relevant work

[105] [34] were deployed against the anomaly detectors employed in this thesis. The

results in Section 9.2 indicated that the mimicry attacks published in the relevant

work created higher anomalies in the anomaly detector configurations employed in

this research since the training sets employed while creating these attacks differ from

the training sets employed to train the detectors. The results show that mimicry

attacks are sensitive to training set changes, even though the previous work argued

against this phenomenon [96] [97] [99]. Having established this phenomenon, Section

9.3 extended the analysis by focusing on developing ‘white-box’ methodologies to

generate mimicry attacks against each anomaly detector configuration employed in

this research.

The results demonstrated that utilizing a longer sliding window allows attackers to

generate mimicry attacks which can generalize over to other detectors which employ

the sliding window concept with shorter sliding window lengths. In particular, the

‘white-box’ mimicry attacks generated against pHsm (with sliding window length of

20) produced low anomaly rates against other detectors but the ‘white-box’ mimicry

attacks generated against the Markov Model detector (with sliding window length of

2) produced high anomaly rates when deployed against other anomaly detectors.

Furthermore, the results indicate that a ‘white-box’ access to the detector provides

a more straightforward way to facilitate the search for mimicry attacks if there is

sufficient internal knowledge of the target detector. This extra internal knowledge is

crucial to limit the ‘white-box’ search, otherwise the search process may become too

computationally costly to perform. However, such internal knowledge also implies

that a certain abstraction is made about the target detector. Hence, the resulting

attacks can be detected if the abstraction is not accurate. On the other hand, the

comparison of anomaly rates between the ‘black-box’ attacks in Section 9.1 and the

‘white-box’ attacks developed in this section revealed that although a ‘black-box’

access presents a more difficult problem, the proposed approach can generate attacks

224

with anomaly rates comparable to the ‘white-box’ attacks. This implies that mimicry

attacks can be generated by assuming a ‘black-box’ approach, which does not require

internal knowledge of the detector. Moreover, it is also established that the proposed

approach utilizes the code bloat property of GP causing an increase in the mimicry

attack length. In return, this enables the attacker to generate longer attacks, hence

reducing the effect of long and anomalous preambles.

Moreover, the detection mechanism plays a crucial role in the success of mimicry

attacks. For example, the mimicry attacks generated against the Neural Network

detector did not perform well against the remaining detectors which employ sliding

windows. This is most likely due to the fact that the mimicry attacks generated

against the Neural Network do not aim to optimize the sequence of system calls.

Similarly the mimicry attacks generated against the detectors which employ sliding

windows did not perform well against the Neural Network detector because utilizing

sequences which remain in the normal database of the detector does not necessarily

mean that the resulting system call frequency distribution will be similar to the

frequency distribution for normal behaviour.

The main property of a ‘white-box’ approach is that the attacker can utilize any

relevant knowledge on the detector such as the training sets, detector normal database

or configuration parameters to facilitate the mimicry attack search. During the devel-

opment of ‘white-box’ mimicry attack generation methodologies it became apparent

that each detector would require a custom search methodology depending upon the

structure of the normal database, configuration parameters and detection mechanism.

On the other hand, the proposed ‘black-box’ mimicry attack generation methodology

using GP has the advantage of working against all the anomaly detectors utilized in

this work without any major modifications or any abstraction. All the ‘black-box’

methodology needs to work is the anomaly rate from the detector. This implies that

a ‘black-box’ approach is more extensible to other anomaly detectors, hence the vul-

nerability testing of the detectors can be performed without requiring multiple search

methods for each detector.

Chapter 10

Analysis of Vulnerable Applications

Chapter 9 focused on analysing mimicry attacks where both ‘white-box’ and ‘black-

box’ mimicry attacks were deployed against different detector configurations. This

chapter, however, investigates the applications which the mimicry attacks were trained

on. The aim of the analysis is to identify the characteristic of each application which

was employed in the mimicry attack experiments discussed in this thesis and to in-

vestigate the effects of the application characteristics in mimicry attack generation.

Furthermore, this chapter examines the best attacks generated against each detector

employed in the mimicry attack experiments in Chapter 8 and identifies the tech-

niques which the attacks employed to evade detection.

10.1 Analysis of System Calls and Normal Databases

Given that the aim of the mimicry attack is to hide within the normal behaviour

of the detector, the analysis detailed in this section aims to determine the effects

of normal behaviour characteristics in the resulting mimicry attacks. Within this

analysis, Table 10.1 details the number of system calls collected for each application

by executing the use cases detailed in Tables 8.1, 8.2, 8.3 and 8.4 for traceroute,

restore, samba and ftpd, respectively. Traceroute and restore, which are local UNIX

programs, utilize smaller sets of system calls compared with samba and ftpd, which

provide services over the network. In terms of the total number of system calls in the

traces, ftpd and restore have the largest sets since they both have use cases which

process large files (i.e. longer execution hence more system calls). As a result, from

Table 10.1, samba and ftpd, which are the two remote UNIX services, have the larger

sets of system calls in terms of unique system call counts. On the other hand restore

and ftpd, which deal with large amounts of file I/O, have the largest number of system

calls in total.

225

226

The next step in analysing the characteristic of each application is to investi-

gate the size of the normal behaviour data structure for the detector. Naturally, as

the normal behaviour of an application becomes more complex, the size of the data

structure will increase. To this end, the data structure lengths for the Stide, pH,

pH with a schema mask (pHsm) and Markov Model detectors are provided in Table

10.2. The Neural Network detector is not included in the analysis because it em-

ploys the same number of weight values regardless of the complexity of the normal

behaviour. In other words, the length of the data structure, provided in Table 4.5, is

pre-determined by the user, hence it does not change.

Stide stores the sequences which it encounters in the training data, therefore the

unit of measure for Stide is the number of sequences stored in the normal database.

pH and pHsm, on the other hand, store the tuple (current system call, previous system

call, location of the previous system call in the sliding window) and therefore the unit

of measure is the number of tuples. A first order Markov Model can be implemented

as a matrix in which the normal behaviour model encapsulates the transitions between

the system calls. Given that detection is based upon transitions which have a zero

probability on the Markov Model, an appropriate measure for the normal database

is the number of non-zero probabilities, or, in other words, the number of distinct

transitions which the Markov Model encountered during training.

Two local applications, traceroute and restore, have the smaller normal behaviour

data structures in Table 10.2, which seem to indicate that network services (samba

and ftpd) have more complex behaviour. This can provide the attacker a wider set

of system calls from which to build mimicry attacks. Furthermore, incorporating the

schema mask in pH seems to increase the normal data structure size for network

services.

Tables 10.1 and 10.2 suggest that not all applications are created equal and certain

applications may have more extensive sets of normal behaviour. This can make it

easier for an attacker to generate a mimicry attack since it represents a larger set

within which the attacker can hide. Although ftpd seems to have a wide set of

normal behaviour and the GP-generated attacks produced low exploit anomaly rates,

the anomalies from the preamble resulted in attacks which produced high anomaly

227

rates. This means that deploying the attack over the network can present a more

difficult problem since the attacker has limited access to the application and may not

be able to prevent the preamble from producing anomalies.

Table 10.1: A summary of the system calls collected for traceroute, restore, samba
and ftpd

traceroute restore samba ftpd

Number of unique system calls 29 30 58 58
Total number of system calls 1315 238728 69451 747300

Table 10.2: The analysis of the detector normal behaviour data structures for the
traceroute, restore, samba and ftpd applications

traceroute restore samba ftpd

Number of unique se-
quences (Stide)

198 198 847 764

Number of unique tuples
(pH)

1124 845 3353 3229

Number of unique tuples
(pHsm)

1247 892 7452 4185

Number of transitions
with non-zero probabilities
(Markov Model)

81 84 259 241

The system call counts were analysed on a per-system-call basis for the traceroute,

restore, samba and ftpd applications in Tables 10.3, 10.4, 10.5 and 10.6, respectively.

Compared with the system call distribution of the restore, samba and ftpd applica-

tions, traceroute had a more even distribution. Conversely, in the case of restore,

over 88% of all system calls executed were the write system calls. The two most

frequently used system calls for samba were read and llseek, both of which per-

form I/O operations. In the case of ftpd, the most frequently executed system calls

perform I/O timing and signalling functions. The discussion of the system calls are

detailed further in Section 10.2 while analysing mimicry attacks.

228

Table 10.3: System call counts and percentages for traceroute

ID System Call Count (%) ID System Call Count (%)

1 gettimeofday 220 16.730% 16 connect 20 1.521%
2 write 142 10.798% 17 ioctl 15 1.141%
3 mmap 113 8.593% 18 uname 14 1.065%
4 select 99 7.529% 19 getpid 12 0.913%
5 sendto 99 7.529% 20 time 10 0.760%
6 close 93 7.072% 21 send 10 0.760%
7 open 86 6.540% 22 poll 10 0.760%
8 read 75 5.703% 23 setsockopt 6 0.456%
9 fstat 73 5.551% 24 exit 5 0.380%
10 munmap 49 3.726% 25 execve 5 0.380%
11 mprotect 34 2.586% 26 personality 5 0.380%
12 socket 29 2.205% 27 stat 4 0.304%
13 recvfrom 28 2.129% 28 setuid 3 0.228%
14 brk 27 2.053% 29 getuid 3 0.228%
15 fcntl 26 1.977%

Table 10.4: System call counts and percentages for restore

ID System Call Count (%) ID System Call Count (%)

1 write 211704 88.680% 16 chown 8 0.003%
2 read 26378 11.049% 17 ioctl 8 0.003%
3 lseek 132 0.055% 18 stat 8 0.003%
4 mmap 91 0.038% 19 rt sigaction 8 0.003%
5 open 67 0.028% 20 llseek 8 0.003%
6 close 56 0.023% 21 fchmod 7 0.003%
7 fstat 51 0.021% 22 fchown 7 0.003%
8 mprotect 30 0.013% 23 exit 5 0.002%
9 munmap 29 0.012% 24 execve 5 0.002%
10 brk 24 0.010% 25 getpid 5 0.002%
11 fcntl 23 0.010% 26 umask 5 0.002%
12 rt sigprocmask 23 0.010% 27 personality 5 0.002%
13 utime 15 0.006% 28 setuid 4 0.002%
14 unlink 8 0.003% 29 getuid 4 0.002%
15 chmod 8 0.003% 30 mkdir 2 0.001%

229

Table 10.5: System call counts and percentages for samba

ID System Call Count (%) ID System Call Count (%)

1 read 28329 40.790% 30 setsockopt 15 0.022%
2 llseek 9612 13.840% 31 socket 14 0.020%
3 select 9398 13.532% 32 getpid 11 0.016%
4 gettimeofday 9395 13.528% 33 setrlimit 11 0.016%
5 send 9389 13.519% 34 getrlimit 11 0.016%
6 fcntl64 1133 1.631% 35 connect 11 0.016%
7 stat 440 0.634% 36 getpeername 8 0.012%
8 open 218 0.314% 37 getuid32 8 0.012%
9 close 205 0.295% 38 chdir 4 0.006%
10 munmap 153 0.220% 39 fchmod 4 0.006%
11 mmap 126 0.181% 40 uname 4 0.006%
12 mmap2 126 0.181% 41 recvfrom 4 0.006%
13 getegid32 99 0.143% 42 poll 4 0.006%
14 geteuid32 97 0.140% 43 rt sigprocmask 4 0.006%
15 time 91 0.131% 44 exit 3 0.004%
16 getsockopt 72 0.104% 45 fork 3 0.004%
17 mprotect 46 0.066% 46 chmod 3 0.004%
18 umask 44 0.063% 47 utime 3 0.004%
19 setresgid32 44 0.063% 48 pipe 3 0.004%
20 setresuid32 44 0.063% 49 bind 3 0.004%
21 setgroups32 41 0.059% 50 accept 3 0.004%
22 rt sigaction 34 0.049% 51 getsockname 3 0.004%
23 write 32 0.046% 52 rename 1 0.001%
24 brk 31 0.045% 53 times 1 0.001%
25 getgroups32 26 0.037% 54 ioctl 1 0.001%
26 alarm 24 0.035% 55 setpriority 1 0.001%
27 pwrite 24 0.035% 56 fgetxattr 1 0.001%
28 ftruncate64 18 0.026% 57 getxattr 1 0.001%
29 getdents64 16 0.023% 58 chown32 1 0.001%

230

Table 10.6: System call counts and percentages for ftpd

ID System Call Count (%) ID System Call Count (%)

1 read 182325 24.398% 30 getrlimit 67 0.009%
2 rt sigaction 181876 24.338% 31 setrlimit 60 0.008%
3 alarm 181649 24.307% 32 setsockopt 46 0.006%
4 write 181596 24.300% 33 setresuid 44 0.006%
5 close 11443 1.531% 34 select 33 0.004%
6 open 1045 0.140% 35 llseek 32 0.004%
7 time 1037 0.139% 36 getuid 30 0.004%
8 mmap 948 0.127% 37 dup2 30 0.004%
9 fstat 716 0.096% 38 getsocknam 30 0.004%
10 munmap 506 0.068% 39 wait4 27 0.004%
11 chdir 364 0.049% 40 execve 20 0.003%
12 fcntl 271 0.036% 41 getpeername 20 0.003%
13 getcwd 267 0.036% 42 personality 20 0.003%
14 socket 256 0.034% 43 getdents 18 0.002%
15 connect 256 0.034% 44 bind 13 0.002%
16 fchdir 240 0.032% 45 kill 12 0.002%
17 mprotect 230 0.031% 46 nanosleep 12 0.002%
18 lstat 227 0.030% 47 gettimeofday 11 0.001%
19 send 195 0.026% 48 exit 10 0.001%
20 brk 187 0.025% 49 fork 10 0.001%
21 stat 183 0.024% 50 sigreturn 10 0.001%
22 poll 160 0.021% 51 accept 10 0.001%
23 recvfrom 140 0.019% 52 shutdown 10 0.001%
24 getpid 131 0.018% 53 getsockopt 10 0.001%
25 rt sigprocmask 101 0.014% 54 setregid 9 0.001%
26 umask 99 0.013% 55 setgroups 9 0.001%
27 uname 78 0.010% 56 quotactl 9 0.001%
28 lseek 74 0.010% 57 pipe 7 0.001%
29 flock 74 0.010% 58 vfork 7 0.001%

231

10.1.1 Discussion of the Analysis Results

Since the main objective of mimicry attacks (in this context) is to hide the true

intention of the code within normal behaviour, the analysis in this section focused on

the analysis of the system calls collected during the normal use of each application

as defined in Tables 8.1, 8.2, 8.3 and 8.4 for traceroute, restore, samba and ftpd,

respectively. Furthermore, the normal behaviour data structures of the detectors were

investigated to determine whether certain applications have larger normal behaviour

models resulting in an increase in normal data structure size.

The analysis of the system calls revealed that different applications utilize different

sets of system calls with different frequencies. Network services samba and ftpd have

more unique system calls than the local services traceroute and restore. Furthermore,

analysis of the normal behaviour data structures of the detectors revealed that the

network services have larger normal behaviour data structures compared with the

local services. Larger normal behaviour models are an indication of more complex

application behaviour and since the network services need to communicate with net-

work clients, their normal operation includes a wider set of system calls. This implies

that an attacker has a wider set of system calls with which to hide the intent of the

attack. However, the preamble lengths (in Tables 8.21, 8.22, 8.23 and 8.24) indicate

that the break-in process for remote services tends to be lengthy and anomalous,

which can provide an additional challenge to the attacker.

Furthermore, the analysis of system call frequency distributions for the four appli-

cations indicates that the system calls are not distributed evenly. For example, 99% of

the system calls which restore executes are read and write system calls. Section 10.2

furthers the discussion on the system call frequency distributions while discussing the

mimicry attacks which GP generated.

232

10.2 Analysis of Mimicry Attacks

The analysis detailed in this section utilizes the 25000 attacks per application (50

runs, 500 attacks per run) provided in Chapter 8. The box plot results in Chapter 8

compared the results among the anomaly detectors employed in the experiments by

comparing the characteristics of the generated mimicry attacks on different detectors,

given an application. On the other hand, the analysis in this section analyses the same

attacks by investigating how the characteristics of the generated mimicry attacks

change for different applications, given a detector. The purpose of such analysis is to

investigate how the application characteristics affect the search for mimicry attacks.

Within the analysis of attacks against each detector, first, all the attack popu-

lations generated against the given detector were compared using box plot analysis.

Subsequently, the best exploits from each population (one for each application) were

selected, where the ‘best’ was defined as the attack with the lowest attack anomaly

rate. The ‘best’ performing attacks were then discussed in terms of the system calls

which they employed to camouflage the attack.

10.2.1 Attacks Against Stide

The box plot of the exploit anomaly rates against Stide is shown in Figure 10.1 and

the box plot of the corresponding attack anomaly rates is shown in Figure 10.2. Fur-

thermore, the box plot of the exploit lengths is shown in Figure 10.3. In Figure 10.3,

the exploit lengths are comparable except for the attacks against the restore appli-

cation where the exploits have a wider range of lengths. This suggests a correlation

between the distribution of the system calls and the exploit lengths since restore dif-

fers from the other applications with the unbalanced distribution of system calls in

the normal behaviour traces, Table 10.4.

233

traceroute restore samba ftpd

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 10.1: Box plot of the mimicry exploit anomaly rates for Stide on traceroute,
restore, samba and ftpd

traceroute restore samba ftpd
0

10

20

30

40

50

60

70

80

90

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 10.2: Box plot of the mimicry attack anomaly rates for Stide on traceroute,
restore, samba and ftpd

234

traceroute restore samba ftpd

0

100

200

300

400

500

600

700

800

900

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 10.3: Box plot of the mimicry exploit lengths for Stide on traceroute, restore,
samba and ftpd

235

A Closer Look at GP-Generated Mimicry Attacks Against Stide

The best mimicry exploit (i.e. that with the lowest attack anomaly rate) against

traceroute is provided in Figure B.1. It is apparent that 6 system calls are repeated

in the exploit: gettimeofday sendto gettimeofday select write write. The

traceroute exploit against Stide hides its true intention within timing and I/O system

calls. gettimeofday provides the timing functionality needed to obtain the round trip

time for the traceroute packets, whereas sendto, select and write provide various

I/O functions.

The best mimicry exploit against samba, Figure B.2 repeats a pattern which

consists of a read followed by a number of llseek system calls. read implements

a read from a resource whereas llseek moves the file pointer. GP employs this

pattern as a smokescreen in between the open and write close system calls to

evade detection. This is not surprising since llseek and read are the mostly utilized

system calls in the system call traces.

Similarly, the best mimicry exploit against restore in Figure B.3 employs a pattern

in which a number of write system calls precede a read system call. The exploit

deploys this smokescreen pattern and follows up with the attack system calls as the

last three system calls.

The best mimicry exploit against ftpd in Figure B.4 is concise compared with

the other exploits generated against Stide. In this exploit, no repeating pattern is

employed by the GP. However GP employs system calls which involve file checks such

as getcwd fchdir fstat along with the system calls which involve timing, such as

alarm.

The common characteristics of the GP-generated attacks against Stide is that

GP identifies and employs a set of system calls which were used frequently by the

application during its normal operation. In the case of traceroute, GP repeats a

certain pattern, whereas in samba and restore, the repetition of system calls is not as

clear. On the other hand, GP chooses to utilize a shorter exploit with no repeating

patterns in ftpd, which seems to indicate that different exploit techniques exist against

different applications.

236

10.2.2 Attacks Against pH

The box plots of the exploit and attack anomaly rates against pH are detailed in

Figures 10.4 and 10.5, respectively. Compared with the anomaly rates of the exploits

and the corresponding attacks against Stide in the previous subsection, the anomaly

rates in Figures 10.4 and 10.5 are comparatively low, which suggests that generating

exploits against the look-ahead pair method in pH may be easier than generating

exploits against the full sequence method in Stide. This condition is discussed in

detail by Inoue et al. [38] and briefly in Section 9.3.2 of this thesis.

A box plot of the delays associated with the exploits is provided in Figure 10.6

and the delays associated with the corresponding attacks are given in Figure 10.7.

Furthermore, the box plot of the attack lengths is provided in Figure 10.8. It is inter-

esting to note that the exploit anomaly rates (and associated delays) on traceroute

are higher that the exploit anomaly rates (and associated delays) on the remain-

ing applications. Given that traceroute utilizes a smaller set of system calls and

produces smaller normal behaviour data structures, the expectation would be that

traceroute has a simpler normal behaviour characteristic. The results indicate that

there are other factors which affect the success of the mimicry attacks. In addition,

the anomaly rates and delays associated with the exploits and attacks support the

finding that traceroute presents a more difficult problem for mimicry attack gener-

ation. This can be attributed to the fact that the frequency distribution of system

calls for traceroute (Table 10.3) is more even than for restore, samba and ftpd (Tables

10.4, 10.5 and 10.6, respectively).

237

traceroute restore samba ftpd

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 10.4: Box plot of the mimicry exploit anomaly rates for pH on traceroute,
restore, samba and ftpd

traceroute restore samba ftpd

10

20

30

40

50

60

70

80

90

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 10.5: Box plot of the mimicry attack anomaly rates for pH on traceroute,
restore, samba and ftpd

238

traceroute restore samba ftpd

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Exploits

Figure 10.6: Box plot of the mimicry exploit delays for pH on traceroute, restore,
samba and ftpd

traceroute restore samba ftpd
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Attacks

Figure 10.7: Box plot of the mimicry attack delays for pH on traceroute, restore,
samba and ftpd

239

traceroute restore samba ftpd

0

100

200

300

400

500

600

700

800

900

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 10.8: Box plot of the mimicry exploit lengths for pH on or traceroute, restore,
samba and ftpd

240

A Closer Look at GP-Generated Mimicry Attacks Against pH

The best exploit against pH for traceroute is provided in Figure B.5. As opposed to

the traceroute attack against Stide, the attack against pH does not employ any clear

repeating pattern but employs different combinations of memory access system calls,

such as mmap and munmap, and file access system calls, such as open fstat and close,

to hide the true intent.

The best mimicry exploit against pH for samba in Figures B.6 and B.7 is fairly

long. Although there are no clear repeating patterns, the strategy which the attack

employs is to deploy various memory access and file I/O system calls (such as mmap2,

munmap, stat) followed by a block of fcntl64 system calls which manipulates a given

file descriptor. This is different from the samba mimicry attack against Stide in which

the exploit focuses on utilizing read and llseek system calls. In terms of the attack

system calls, the open and write system calls are toward the beginning of the exploit

whereas the close system call is toward the end.

The best mimicry exploit against pH for restore in Figure B.8, shows that the

exploit alternates between a single lseek and a block of write system calls, where

lseek provides random access to a file. lseek is the third most frequent system call

in the system call traces, whereas write is the most frequent (Table 10.4). Similarly,

the restore attack against Stide employed write and read system calls primarily,

which are the two most frequent system calls.

Figure B.9 shows the best exploit against pH on ftpd. Compared to the ftpd

exploit against Stide, this exploit is longer and follows a different strategy and employs

combinations of read, write and close system calls whereas the ftpd exploit against

Stide is shorter and employs system calls related to timing and file checks.

As in the exploit techniques which GP employed against Stide, the exploits against

pH contain system calls which the applications execute frequently during their nor-

mal operation, albeit utilizing different system calls from the attacks against Stide.

Although no clear repeating pattern exists, different combinations of the more fre-

quent system calls were injected between the malicious system calls to hide the true

intention of the attack.

241

10.2.3 Attacks Against pHsm

The analysis of applications for pHsm involves two scenarios: (1) the attacker knows

the schema mask which the detector uses or (2) the mask is unknown. In the former

scenario, the attacker uses the appropriate schema mask, whereas in the latter scenario

a different schema mask is used. Therefore, the measurements are obtained for each

scenario separately.

Figure 10.9 shows the box plot for the exploit anomaly rates for pHsm whereas

Figure 10.10 shows the exploit anomaly rates when the schema mask is unknown

to the attacker. Similarly, Figure 10.11 details the anomaly rates for the attack,

compared to Figure 10.12, which details the anomaly rates for the attack when the

schema mask is unknown to the attacker. Furthermore, the delays associated with the

exploits are detailed in Figures 10.13 and 10.14, for the scenarios where the schema

mask is known and unknown to the attacker, respectively. Similarly, Figures 10.15

and 10.16 demonstrate the delays associated with the corresponding attacks for the

scenarios where the schema mask is known and unknown to the attacker, respectively.

Finally, the box plot for the exploit lengths is provided in Figure 10.17.

A comparison of the box plots between the scenarios where the schema mask is

known and unknown indicates that a schema mask is crucial to the success of mimicry

attacks. In other words, the anomaly rate and the delay box plots demonstrate that

when the attacker needs to generate mimicry attacks against pH without knowing the

schema mask, the anomaly rates and delays for both the exploits and the attacks in-

crease. Although knowing the schema mask provides GP valuable information which

helps to reduce anomaly rates, the ‘black-box’ approach assumed by GP succeeded

in working without the schema mask information, thus producing exploits with com-

parable (albeit higher) anomaly rates.

242

traceroute restore samba ftpd

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 10.9: Box plot of the mimicry exploit anomaly rates for pHsm on traceroute,
restore, samba and ftpd

traceroute restore samba ftpd

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 10.10: Box plot of the mimicry exploit anomaly rates for pHsm (mask un-
known) on traceroute, restore, samba and ftpd

243

traceroute restore samba ftpd

0

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 10.11: Box plot of the mimicry attack anomaly rates for pHsm on traceroute,
restore, samba and ftpd

traceroute restore samba ftpd

10

20

30

40

50

60

70

80

90

100

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 10.12: Box plot of the mimicry attack anomaly rates for pHsm (mask unknown)
on traceroute, restore, samba and ftpd

244

traceroute restore samba ftpd
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Exploits

Figure 10.13: Box plot of the mimicry exploit delays for pHsm on traceroute, restore,
samba and ftpd

traceroute restore samba ftpd
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Exploits

Figure 10.14: Box plot of the mimicry exploit delays for pHsm (mask unknown) on
traceroute, restore, samba and ftpd

245

traceroute restore samba ftpd
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Attacks

Figure 10.15: Box plot of the mimicry attack delays for pHsm on traceroute, restore,
samba and ftpd

traceroute restore samba ftpd
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

D
el

ay
 (

S
ec

on
ds

)

Delay of Attacks

Figure 10.16: Box plot of the mimicry attack delays for pHsm (mask unknown) on
traceroute, restore, samba and ftpd

246

traceroute restore samba ftpd

0

100

200

300

400

500

600

700

800

900

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 10.17: Box plot of the mimicry exploit lengths for pHsm on traceroute, restore,
samba and ftpd

247

A Closer Look at GP-Generated Mimicry Attacks Against pHsm

The best mimicry exploit against pHsm on traceroute is provided in Figure B.10. In

this exploit, the true intention of the attack is hidden between blocks of open and

mmap system calls which handle file I/O and memory mapping functions, respectively.

This trait is similar to the mimicry exploit against pH but different from the Stide

exploit which utilizes timing system calls.

The best mimicry exploit on samba is provided in Figures B.11 and B.12, where

the exploit does not utilize a clear repeating pattern but uses a combination of read,

stat, munmap, mmap and other numerous system calls. The system calls related to the

attack is within the first 10 system calls. Given that the most frequent system calls

are somewhat evenly distributed for samba, the exploit utilizes a number of system

calls to hide the true intention of the code. This is a common trait shared among the

samba exploits against Stide and pH, where similar system calls are utilized.

Similarly, the best mimicry exploit on restore in Figures B.13 and B.14 learns

to hide within normal behaviour by utilizing a series of write and read system

calls which make up the 99% of the executed system calls by restore (Table 10.4).

Restore exploits against both Stide and pH utilize the same technique to hide the

true intention of the exploit.

As opposed to the concise ftpd exploits for Stide and pH, the ftpd exploit against

pHsm (Figures B.15 and B.16) is comparatively long. Although there are no clear

repeating patterns, the ftpd exploit utilizes frequently used system calls such as

rt sigaction, open, read, close, time (Table 10.6) to formulate the padding within

which the attack system calls are hidden.

While employing numerous system calls which do not appear on exploits against

Stide and pH, GP follows similar techniques for hiding the true intent of the code.

That is to say, although no repeating pattern clearly exists, the exploits generated

by GP against pHsm utilize the system calls which are used frequently during the

normal operation of the applications.

248

In cases where the frequency of the system call distribution is even, such as in the

case of traceroute, Table 10.3, GP utilizes a variation of system calls. On the other

hand, if the distribution is biased toward certain system calls, such as in the case of

restore, Table 10.4, GP utilizes a smaller set of system calls to construct the exploits.

10.2.4 Attacks Against the Markov Model

The box plots of exploit and attack anomaly rates against the Markov Model detector

are detailed in Figures 10.18 and 10.19, respectively and the box plot of the exploit

lengths is provided in Figure 10.20. The box plots show that the anomaly rates against

traceroute have a wider range than the anomaly rates for the other applications.

Similarly, the box plot of exploit lengths in Figure 10.20 indicates that GP favours

longer exploits for restore, samba and ftpd, whereas in the case of traceroute, the

exploit length varies over a greater range. As discussed in Sections 10.2.3 and 10.2.3,

this can be attributed to the system call frequency distribution for traceroute in which

the distribution is more even than for restore, samba and ftpd. Arguably, within the

machine learning context, from the perspective of the characterization of search space,

such an even distribution of the system calls requires GP to search a wider search

space than the rest of the applications. For example, given the system call frequency

distribution for restore, Table 10.4, GP can identify the set of system calls to use

relatively easily since 99% of the system calls encountered during normal operation

are read, write and lseek system calls. Compared to the case of traceroute, fewer

system calls result in fewer combinations of system call sequences, which implies that,

given a limited number of system calls, the effective size of the search space is smaller

than the upper limit provided in Section 8.2.4.

249

traceroute restore samba ftpd

0

10

20

30

40

50

60

70

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 10.18: Box plot of the mimicry exploit anomaly rates for the Markov Model
detector on traceroute, restore, samba and ftpd

traceroute restore samba ftpd

0

10

20

30

40

50

60

70

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 10.19: Box plot of the mimicry attack anomaly rates for the Markov Model
detector on traceroute, restore, samba and ftpd

250

traceroute restore samba ftpd

0

100

200

300

400

500

600

700

800

900

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 10.20: Box plot of the mimicry exploit lengths for the Markov Model detector
on traceroute, restore, samba and ftpd

251

A Closer Look at GP-Generated Mimicry Attacks Against the Markov

Model

The best mimicry exploit on traceroute is provided in Figures B.17 and B.18. Sys-

tem calls which perform I/O and memory access operations such as gettimeofday,

select, write and munmap are utilized to hide the true intent of the code. As in the

traceroute exploit against Stide, GP utilizes system calls related to timing.

The best exploit on the samba application against the Markov Model detector is

provided in Figures B.19 and B.20. The exploit employs system calls involving file

manipulation such as llseek, stat and fcntl64 with munmap, which deallocates

memory. Sequences llseek munmap stat and llseek munmap time are repeated

in various sections of the exploit. Similar to the samba attacks against Stide, pH and

pHsm, the true intent of the code is hidden within numerous types of system calls

related to I/O operations.

The best restore mimicry exploit against the Markov Model detector in Figures

B.21 and B.22 shows that the exploit utilizes mainly file I/O system calls such as

open, read, write, rt sigprocmask and lseek. As opposed to the restore exploits

generated against Stide, pH and pHsm, this exploit employs system calls which occur

rarely during normal operation such as rt sigprocmask and lseek. This is likely to

be an effect of the shorter sliding window size of the Markov Model. Specifically, the

longer sliding windows produce more sequences to be stored in the normal database

due to the fact that longer sliding window patterns have more variations (Table 10.2).

Therefore, against a smaller normal database, the search is more ‘thorough’ in the

sense that rare system calls are utilized in the exploits as well.

As in the ftpd exploits against Stide, pH and pHsm, the best ftpd mimicry exploit

against the Markov Model detector in Figures B.23 and B.23 utilizes a set of system

calls performing I/O (i.e. open, read, write, close) to hide the true intent of the

attack. Given an application which makes frequent open / write / close system calls,

it is fairly difficult to detect an attack without monitoring the system call parameters

and the outcome (i.e. the return values or error messages). It is important to note that

the proposed approach generates system call parameters, but the anomaly detectors

(employed in this thesis) do not employ them.

252

In summary, the exploits generated against the Markov Model detector share the

same traits with the exploits against Stide, pH and pHsm mainly by employing system

calls that are encountered frequently during the normal operation of the applications.

However, given that the normal database is comparatively smaller than for the above-

mentioned detectors, GP performs a more thorough search and, in addition to the

frequent system calls, employs system calls which are encountered seldom during the

normal operation of the applications.

10.2.5 Attacks Against the Neural Network

The box plots for the exploit and attack anomaly rates are provided in Figures 10.21

and 10.22, respectively, and the box plot for exploit lengths is provided in Figure

10.23. In the case of the Neural Network detector, the attacks on samba produced

higher anomaly rates than the attacks on the remaining applications in Figure 10.21.

A similar case was observed for traceroute and pH which seems to suggest that the

application and detector combination affects the anomaly rates for mimicry attacks.

In other words, pH provides a better defense against traceroute, whereas the Neural

Network detector provides better defense on the samba application. Therefore, it is

important for the defensive operations not only to identify the suitable parameters

for the detectors but also to select the appropriate detector for the applications. In

other words, one type of detector may not be suitable for all types of applications

and furthermore the identification of suitable parameters can improve detector per-

formance. The mimicry attack generation proposed in this thesis provides a suitable

tool for determining the right detector for each application.

A Closer Look at GP-Generated Mimicry Attacks Against the Neural

Network

The best traceroute mimicry exploit against the Neural Network Detector is provided

in Figures B.25, B.26 and B.27. The traceroute attack against the Neural Network

utilizes system calls which do not appear on the other traceroute exploits such as

recvfrom, poll, brk. The recvfrom system call receives messages from a network

socket whereas brk changes the data segment size of the process and poll provides

253

traceroute restore samba ftpd

2

4

6

8

10

12

14

16

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Exploits

Figure 10.21: Box plot of the mimicry exploit anomaly rates for the Neural Network
detector on traceroute, restore, samba and ftpd

traceroute restore samba ftpd
1

2

3

4

5

6

7

8

A
no

m
al

y
R

at
e

(%
)

Anomaly Rate of Attacks

Figure 10.22: Box plot of the mimicry attack anomaly rates for the Neural Network
detector on traceroute, restore, samba and ftpd

254

traceroute restore samba ftpd

900

920

940

960

980

1000

S
ys

te
m

 C
al

l C
ou

nt

Length of Exploits

Figure 10.23: Box plot of the mimicry exploit lengths for the Neural Network detector
on traceroute, restore, samba and ftpd

support for multiplexing several data streams. The use of different system calls indi-

cates that GP employs different strategies to evade different detection methodologies.

The best samba mimicry exploit against the Neural Network detector is detailed

in Figures B.28 and B.29. As in the traceroute case, the exploit contains system calls

such as getegid32 and getsockopt which are not utilized in the other samba attacks

against other detectors.

The best restore mimicry exploit against the Neural Network detector in Figures

B.30 and B.31 shows that the exploit uses file I/O system calls such as open, write,

close, fstat, fcntl to hide the true intent along with numerous rare system calls

such as chown and unlink. Unlike other exploits on restore, the read system call is

rarely employed in this exploit, which indicates that GP employed a different strategy

while evading the system call frequency distribution model of the Neural Network

detector.

The best ftpd mimicry exploit against the Neural Network detector is provided in

Figures B.32 and B.33. As with the other ftpd exploits against the other detectors,

various memory and file I/O system calls were utilized with blocks of close system

255

calls, although there is no clear repeating pattern. However, the ftpd exploit against

the Neural Network detector employs rare system calls as well, such as brk, which

makes up 0.025% of all system calls executed during the normal operation of the ftpd

application, Table 10.6.

Since the detection methodology which the Neural Network utilizes looks for a

match in the frequency distribution of system calls in a trace, GP builds exploits

which match the frequency distribution for which the detector seeks by utilizing

rarely used system calls as well as the frequently used system calls.

10.2.6 Summary of the Analysis

The previous sections compared the mimicry exploits which GP generated for each

detector, whereas this section focuses on summarizing the results of the previous

sections and comparing the GP-generated exploits for each application. To this end,

four summary tables are presented: Tables 10.7, 10.8, 10.9 and 10.10 for traceroute,

restore, samba and ftpd, respectively. Each summary table details the characteristics

of the five exploits (one against each detector) for the given application. Each attack

is detailed with the following characteristics:

• System Call Types (ST). System calls on an IA32 architecture are orga-

nized according to the functions they perform [8]. The high level categories

would include file system (file), inter-process communication (ipc), kernel (ker-

nel), memory management (memory), network communication (network) and

architecture-dependent system calls (arch). Therefore, ST fields in the sum-

mary tables provide the categories for the system calls. Appendix C details the

system call categories and provides a list of system calls for each category.

• System Call Indices (SI). In Tables 10.3, 10.4, 10.5 and 10.6, which detail

the frequency of system calls in the training data, each system call is assigned an

index based upon its rank according to the frequency values. That is to say, the

most frequent system call will obtain index number 1 and so on. Summary tables

provide the minimum, maximum and median values for system call indices in

the SI fields. Minimum and maximum values provide information on the most

256

and least frequent system call which GP used in the attack, respectively, whereas

the median is intended to give the reader an idea of the spread of the indices.

A better view of the spread of indices is provided in box plot analyses of the

system call indices in Figures 10.24, 10.25, 10.26 and 10.27 for the exploits on

traceroute, restore, samba and ftpd, respectively.

• Unique System Call Count (SU). Although the instruction sets in Tables

8.6, 8.8, 8.9 and 8.7 provide the 20 most frequently executed system calls for

GP to use, GP is free to employ any subset of the instruction set to build the

exploit. To this end, the SU fields in the summary tables provide the number

of unique system calls in the exploit.

• Repeating Pattern (RP). In addition to the types and indices of system

calls, another observable characteristic is how GP employs the system calls to

build the exploits. The RP field in the summary tables discusses whether a

pattern (a clear pattern or a combination of certain system calls) exists in the

exploit.

• Exploit Length (LN). The LN fields in the summary tables provide the ex-

ploit lengths which was detailed previously in Table 8.20.

Table 10.7 summarizes the exploits on traceroute for the five anomaly detectors.

It is apparent that GP employs different strategies to evade different detectors. For

example, when evading Stide, GP employs a smaller subset of system calls and builds

a shorter exploit. On the other hand, GP evades the Neural Network detector by

employing a larger subset of system calls in which rare system calls are utilized along

with frequent system calls. This is apparent in Figure 10.24 as well which details the

spread of system calls (where lower indices indicate more frequent system calls).

Table 10.8 summarizes the mimicry exploits on restore. Compared with tracer-

oute, GP utilizes a smaller set of system calls to build the exploit. This is not

surprising since 99% of all system calls in the normal behaviour traces are read and

write system calls. As with the traceroute exploits, GP utilizes different strategies

to build the exploits where GP employs more types of system calls while generating

exploits against the Markov Model and Neural Network detectors. As discussed in the

257

Table 10.7: An overview of the attacks generated by GP on traceroute

Target
Detector

Attack Characteristics

ST: kernel, file, memory, network
Stide SI: min: 1, med: 2, max: 9

SU: 8
RP: Pattern (gettimeofday sendto gettimeofday

select write) exists.
LN: 34 system calls
ST: file, memory

pH SI: min: 2, med: 6, max: 14
SU: 8
RP: None.
LN: 118 system calls
ST: kernel, file, memory

pHsm SI: min: 1, med: 7, max: 10
SU: 8
RP: Different combinations of mmap and open.
LN: 1000 system calls
ST: kernel, file, memory

Markov SI: min: 1, med: 2, max: 14
Model SU: 9

RP: Different combinations of gettimeofday and write.
LN: 957 system calls
ST: kernel, file, memory, network

Neural SI: min: 1, med: 7, max: 22
Network SU: 20

RP: None.
LN: 1000 system calls

258

Stide pH pHsm Markov Model Neural Network
0

5

10

15

20

In
de

x
V

al
ue

s

Figure 10.24: Box plot of the system call indices for the traceroute exploits

previous sections, this can be attributed to two factors. First, given that the Markov

Model has a smaller normal database, GP explores infrequent system call sequences as

well as frequent ones. Second, since the Neural Network detector monitors deviations

from the normal system call frequency distribution, GP builds exploits to match the

normal frequency distribution which implies that rare system calls are employed as

well. Figure 10.25, which provides the box plot for the system call indices, provides

further support for this argument.

The summary of the GP-generated exploits on samba is provided in Table 10.9.

Compared to the traceroute and restore exploits, the samba exploits utilize rare sys-

tem calls, although the number of unique system calls are comparable. As in the

previous results, exploits against the Markov Model and Neural Networks utilize

more types of system calls than the exploits against Stide and pH. Furthermore, the

box plot demonstrates that GP employs more types of system calls against pHsm as

well, Figure 10.26. This indicates that the implementation of a schema mask causes

GP to employ a different strategy for building the exploits.

Table 10.10 summarizes the ftpd exploits, whereas Figure 10.27 shows the box

plot analysis of the system calls. The exploit against Stide stands out since GP did

259

Table 10.8: An overview of the attacks generated by GP on restore

Target
Detector

Attack Characteristics

ST: file
Stide SI: min: 1, med: 1, max: 6

SU: 4
RP: Different combinations of read and write.
LN: 1000 system calls
ST: file

pH SI: min: 1, med: 1, max: 11
SU: 6
RP: Different combinations of read, write and lseek. Large

blocks of write.
LN: 1000 system calls
ST: file, memory

pHsm SI: min: 1, med: 1, max: 6
SU: 6
RP: Different combinations of read, write and lseek.
LN: 999 system calls
ST: kernel, file, memory

Markov SI: min: 1, med: 2, max: 12
Model SU: 8

RP: Different combinations of read, write and lseek.
LN: 1000 system calls
ST: kernel, file, memory

Neural SI: min: 1, med: 5, max: 20
Network SU: 19

RP: None.
LN: 1000 system calls

260

Stide pH pHsm Markov Model Neural Network

2

4

6

8

10

12

14

16

18

20

In
de

x
V

al
ue

s

Figure 10.25: Box plot of the system call indices for the restore exploits

Stide pH pHsm Markov Model Neural Network
0

5

10

15

20

In
de

x
V

al
ue

s

Figure 10.26: Box plot of the system call indices for the samba exploits

261

Table 10.9: An overview of the attacks generated by GP on samba

Target
Detector

Attack Characteristics

ST: file
Stide SI: min: 1, med: 2, max: 23

SU: 6
RP: Different combinations of read and lseek. Large blocks

of llseek.
LN: 1000 system calls
ST: kernel, file, memory

pH SI: min: 1, med: 6, max: 23
SU: 9
RP: Different combinations of fcntl64, munmap and stat.

Long blocks of write.
LN: 1000 system calls
ST: kernel, file, memory

pHsm SI: min: 1, med: 7, max: 23
SU: 11
RP: None.
LN: 1000 system calls
ST: kernel, file, memory

Markov SI: min: 1, med: 7, max: 23
Model SU: 12

RP: Different combinations of fcntl64, munmap and stat.
LN: 983 system calls
ST: kernel, file, memory, network

Neural SI: min: 1, med: 8, max: 23
Network SU: 20

RP: None.
LN: 1000 system calls

262

not employ the three most frequent system calls in this exploit. Furthermore, among

the GP exploits analysed, the ftpd exploit against Stide is the shortest one. As with

the results discussed in previous summary tables, the exploits against the Markov

Model and Neural Network detectors utilize more types of system calls (i.e. a higher

number of unique system calls) and utilize infrequent system calls in the exploits.

As discussed previously, this is because in both detection methodologies rare system

calls play a role as important as the frequent system calls.

Table 10.10: An overview of the attacks generated by GP on ftpd

Target
Detector

Attack Characteristics

ST: kernel, file, network
Stide SI: min: 4, med: 7, max: 16

SU: 8
RP: None.
LN: 11 system calls
ST: kernel, file

pH SI: min: 1, med: 5, max: 7
SU: 5
RP: Different combinations of open, read, write and close.

Long blocks of close.
LN: 1000 system calls
ST: kernel, file, memory

pHsm SI: min: 1, med: 5, max: 11
SU: 10
RP: Different combinations of open, read, write and close.
LN: 994 system calls
ST: kernel, file, memory

Markov SI: min: 1, med: 4, max: 13
Model SU: 10

RP: Different combinations of open, read, write, close,
and rt sigaction.

LN: 1000 system calls
ST: kernel, file, memory, network

Neural SI: min: 1, med: 5, max: 20
Network SU: 19

RP: None.
LN: 1000 system calls

263

Stide pH pHsm Markov Model Neural Network

2

4

6

8

10

12

14

16

18

20

In
de

x
V

al
ue

s

Figure 10.27: Box plot of the system call indices for the ftpd exploits

264

10.2.7 Discussion of the Analysis Results

The purpose of the analysis in this section is to investigate the effects of the vulnera-

ble application in the resulting attacks. To this end, 100,000 attacks were generated

against each detector (4 applications; 25000 for each application, given 50 runs per

application and 500 attacks per run) which were analysed using box plots. Addi-

tionally the best mimicry attacks were analysed in order to identify the system calls

which they employed to camouflage the attack.

The results indicate that the distribution of the system calls in the traces on

which the detector is trained plays an important role in determining the patterns

which the attack uses to hide the true intent of the attack. For example, attacks

against restore commonly utilize blocks of read and write system calls which are

executed frequently by restore during normal use. Some attacks employed repeating

patterns, such as in the traceroute attack against Stide, whereas other attacks do not

utilize a clear repeating pattern, as in the ftpd attack against Stide.

An interesting finding of the analysis is that the attacks generated against tracer-

oute have higher anomaly rates, which seems to suggest that generating attacks

against traceroute was harder. Given that the normal behaviour data structure and

the number of system calls that traceroute utilizes are low compared to other ap-

plications, this indicates that there are other factors which affect the difficulty of

generating mimicry attacks against an application. One possible reason behind this

can be the frequency distribution of system calls. Given that the frequency distri-

bution of system calls for traceroute is more balanced compared to those for restore,

samba and ftpd, this may affect the difficulty of generating attacks against traceroute.

It is evident that, when attacks against different detectors are compared (on the

same application), GP identifies an evasion strategy on a per detector basis. In other

words, the system call types and frequency distributions in the exploits vary based

upon the target detector. The common finding suggests that GP utilizes infrequent

system calls to build exploits against the Markov Model and Neural Network detec-

tors, whereas the exploits against the remaining detectors generally utilize a smaller

set of system calls (i.e. the frequent system calls).

Furthermore, the normal behaviour of the application plays an important role in

265

determining what strategies GP will use under the ‘black-box’ assumption to evade

detection. If the frequency distribution of system calls in normal behaviour is fairly

even (i.e. distributed among a number of system calls), as with traceroute, GP

aims to build exploits which share similar characteristics. On the other hand, if

a small subset of system calls constitutes a substantial portion of the system calls

made during normal operation, then GP identifies the frequent subset and builds the

attacks accordingly. The analysis of the best ‘black-box’ mimicry attacks indicates

that the attacks use system calls related to file I/O, memory allocation/deallocation

and timing to hide the true intent of the attack. In the cases of samba and ftpd, the

‘black-box’ exploits utilized system calls related to network communications as well,

which differs from the traceroute and restore exploits. This is expected since samba

and ftpd are the only network-based applications among the four employed in this

thesis.

An advantage of the proposed approach is that if ‘white-box’ access to the detec-

tor is not possible or feasible, analysis of the ‘black-box’ approach provides valuable

insight into the normal behaviour model of the detector. That is to say, based upon

the attacks which the proposed ‘black-box’ approach generates, it is possible to iden-

tify the system calls employed frequently by GP. Furthermore, the repeating system

call sequences and the types of system calls which the proposed ‘black-box’ approach

employs can help detector developers to identify a subset of inputs which reveals the

shortcomings of the detector, hence making it easier to identify and eliminate the

detector’s vulnerabilities.

Chapter 11

Conclusion

Buffer overflow attacks are a common threat to computer systems in which the at-

tackers exploit software vulnerabilities. Subsequently, attackers inject their malicious

code and obtain control of the systems on which the vulnerable software is found.

Commonly, the buffer overflow attack leads to various criminal activities such as

vandalism, fraud, identity theft, intellectual property theft and many other types of

crime. Buffer overflows become more critical, if the vulnerable software provides net-

work services or runs in privileged mode as the vulnerability can be exploited from a

remote location and provide super-user access to the system.

Realistically, one can assume that vulnerabilities exist even when the software is

well written and well tested. Therefore, it is important to have defense mechanisms

in place against buffer overflow attacks. To this end, the detection of buffer overflow

attacks is possible using misuse detection or anomaly detection. However, no system

is infallible, including the detectors. Thus, vulnerability testing of the detectors is

crucial for identifying the vulnerabilities and ensuring that the detection methodology

is adequate.

This thesis proposes a ‘black-box’ approach (which is based upon Evolutionary

Computation) to generate buffer overflows automatically. The purpose of generating

buffer overflow attacks automatically is to perform vulnerability testing on detectors

which aim to detect buffer overflow attacks. If the test reveals an attack which can

evade detection while deploying successfully, it implies that the detector is vulnerable.

The proposed approach can be considered as ‘white-hat’ hacking and contributes

to computer security by making it easy to determine the limitations of the detectors

and eliminate their vulnerabilities before the attacker can exploit them to evade de-

tection. The proposed approach is employed against a misuse detector, namely Snort,

and against numerous anomaly detectors, namely Stide, pH, pH with a schema mask

266

267

(pHsm), the Markov Model and the Neural Network. The aforementioned detectors

utilize different detection methodologies to detect the stack overflow attacks and they

provide suitable detection feedback, in the form of detection rates and delays which

are employed to guide the search for the evasion attacks.

Based upon the access to the detector, the relevant work on detector vulnerability

testing can be categorized in two groups: (1) ‘white-box’ approaches which assume

the availability of internal knowledge of the detector [105] [99] [96] [98] [32] [56] [34]

and (2) ‘black-box’ approaches which assume a more limited access to the detector

[82], [73] [102] [48] [44] [49] [45] [46]. For example, in the case of an anomaly detector

testing effort, a ‘white-box’ approach assumes that internal knowledge such as the

detector parameters and normal behaviour database are available for use in the tests,

whereas the ‘black-box’ approach assumes that the method of interaction with the

detector is limited to the detector outputs, such as the anomaly rate which is returned

by the detector as a part of its normal operation.

Within the context of detector vulnerability testing, both ‘black-box’ and ‘white-

box’ detector vulnerability testing aim to implement search methods to develop eva-

sion attacks which can evade detection by avoiding signatures or by altering the

malicious behaviour to resemble ‘normal’ use. The number of distinct attacks which

the search can yield comprises the search space. In other words, the search space sig-

nifies the number of candidate evasion attacks which the search method can generate.

The search space depends upon parameters of the vulnerability testing such as the

attack length, evasion methodology and the information available from the detector.

A ‘white-box’ approach employs the additional knowledge to reduce the search space

so that an exhaustive search can be performed, automatically or manually. On the

other hand, the ‘black-box’ method employs the limited information from the detec-

tor to perform the search. Although performing the search with limited information

presents a more difficult scenario, the ‘black-box’ approach can be applied to various

detectors as long as they provide a similar means of interaction. From this perspec-

tive, the ‘white-box’ approaches are at a disadvantage since they do not generalize

well to other detectors due to their detector specific search methods.

268

In particular, this thesis focuses on stack buffer overflows on Intel 32 bit archi-

tecture and employs Evolutionary Computation to evolve evasion attacks where the

general objective is to produce attacks which can deploy without being detected by

the target misuse and anomaly detectors. The Evolutionary Computation approach

proposed in this thesis aims to improve various buffer overflow components using

different evasion techniques.

Stack overflow attacks are suitable for establishing the effectiveness of the proposed

approach. Not only their ground truth is widely available in the current literature but

also they have been studied in the previous evasion attack research. The proposed

approach relates to a wider scope of attacks where the attacker aims to alter the code

he/she injects to evade detection.

Buffer Overflow Components. As discussed in Chapter 2, a common buffer over-

flow attack has three components: a NoOP sled, a shellcode and a block of

approximated return addresses. Chapter 6 focuses mainly on developing suit-

able NoOP and return address components in which the objective of the attacker

is to utilize shorter NoOP sleds to evade the misuse detectors. In order to ac-

complish this, the approximated address value in the return address component

needs to be more accurate since utilizing fewer NoOPs implies that fewer return

address values can cause the shellcode to deploy successfully. Chapter 7 focuses

on the shellcode component and aims to evade misuse detectors by reordering

the assembly instructions or by discovering other assembly instructions which

can achieve the attack goals. Similarly, Chapter 8 focuses on shellcode but aims

to generate attacks at the system call level by identifying system call sequences

which can deploy the exploit while being recognized as normal by the anomaly

detector.

Evasion Techniques. Among the various evasion techniques [100], those of interest

to this thesis are obfuscation and mimicry attacks. The GE approach discussed

in Chapter 6 sets the scene for an obfuscation evasion attack against Snort by

improving the detectable characteristics of the malicious buffer other than the

payload. Following such an optimization, the linear GP discussed in Chapter 7

obfuscates the shellcode by altering the ordering of the shellcode instructions so

269

that the signatures do not match with the shellcode, hence evading detection.

On the other hand, when the evasion attacks are targeted toward the anomaly

detectors which monitor application behaviour at the system call level, attackers

can employ an evasion technique called a mimicry attack where the attackers

alter their shellcode so that the attack is recognized as normal behaviour. To

generate mimicry attacks, the linear GP with Pareto optimization discussed

in Chapter 8 was employed to modify the ‘core’ attack to evade the anomaly

detectors which monitor system call sequences.

A central theme in the approach taken in this thesis is the utilization of stochastic

search processes, namely Grammatical Evolution and Genetic Programming, against

a ‘black-box’ detector to automate the process of malicious code design. The specific

emphasis was placed on three areas.

1. Identification of an appropriate instruction set from which the exploits are built

is crucial. In this thesis, the exploits are built at the assembly (Chapters 6 and

7) and at the system call levels (Chapter 8).

2. Identification of appropriate goals is needed, where these can take two basic

forms:

(a) minimizing or eliminating detection. In the case of misuse detection (Chap-

ters 6 and 7), this implies minimizing the number of alarms. On the other

hand, in the case of anomaly detection (Chapter 8), this implies minimizing

the anomaly rate.

(b) matching key steps in establishing the ‘core’ exploit. In the case of misuse

detection (Chapters 6 and 7) this implies having suitable NoOP, shellcode

and return address components which can execute a system call. Whereas,

in the case of anomaly detection (Chapter 8), the focus is on the shellcode,

and as opposed to the assembly level case, the granularity is at a higher

level, namely that of system calls.

3. Support for obfuscation, which in this case is a direct side effect of the stochastic

search operators inherent in EC.

270

11.1 Contributions

As discussed earlier in this chapter, the general objective of this thesis is to provide

an automated ‘black-box’ method for generating buffer overflow attacks for testing

misuse and anomaly detectors. The contributions of this work are detailed below

1. An Artificial Arms Race. The proposed vulnerability testing approach rep-

resents an artificial arms race between attackers and detectors for the purpose

of eliminating detector weaknesses. In this arms race, the attacker interacts

with the target detector by utilizing the detector feedback (i.e. detection and

anomaly rates, delays) to build evasion attacks, which can evade detection while

achieving the objectives of the attacker. If the attacker can deploy an evasion at-

tack while remaining undetected, it indicates that the detector is susceptible to

evasion attacks. Thus, the defenders analyse the evasion attacks and eliminate

the weaknesses of the target detector. A future extension of the arms race is

to utilize adaptive detection methods and facilitate a co-evolution between the

attackers and the adaptive detectors in which the objective is to build detectors

which are robust against evasion attacks, as discussed in Section 11.4.

2. Access to the Detector. The proposed approach assumes a ‘black-box’ ap-

proach, where the input from the detector is limited to the anomaly rate in

anomaly detection scenarios and detection information in misuse detection sce-

narios. Assuming a ‘black-box’ access to the detector is more suitable for testing

both open and closed source detectors where the developer is unable or unwill-

ing to share the design details and internal data structures with the tester. In

‘white-box’ testing, the test methodology is biased heavily upon the internal

knowledge employed to build the abstractions and to facilitate the test [81].

This implies that ‘white-box’ approaches tend to be detector specific and may

not work on other detectors when the required ‘white-box’ information is not

available. Moreover, the proposed ‘black-box’ approach can be employed for

detector parameterization as well, where the objective is to identify suitable

deployment parameters such as the sliding window length and locality frame

count to provide effective detection.

271

3. Analysis of ‘Normal Behaviour’. In the case of evading anomaly detectors

using mimicry attacks, the attacker employs the ‘normal behaviour’ model in

a search, where the objective is to locate a subset of the model which allows

the attacker to perform a malicious action. Given that normal behaviour has

an impact on the search space, the analysis of normal behaviour is of inter-

est. Within this context, this thesis provides a methodology for the analysis of

the training set sensitivity for the anomaly detectors. Furthermore, given two

applications which are monitored by the same detector, the normal behaviour

model of an application (i.e. the normal behaviour database size, the number

of system calls and the distribution of system calls) can have an impact on the

difficulty of generating attacks against that application. To this end, this thesis

provides a methodology for the analysis of the normal behaviour for four UNIX

applications and the corresponding normal behaviour databases in the anomaly

detectors. Such analysis is important for identifying the elements in the normal

behaviour model which the attackers are likely to exploit such as open-write-

close sequences. As a result, additional measures can be built around these

unsafe elements to prevent evasion attacks in advance.

4. Evaluation of the Attacks. As discussed earlier, in the case of evading

anomaly detectors using mimicry attacks, buffer overflow attacks have two

stages, the preamble and the exploit. The preamble may have substantial ef-

fects on the anomaly rate of the attack if it is long and anomalous. Therefore,

in this thesis, the anomaly rate is calculated for the attacks (i.e. preamble

and exploit), whereas the previous work on mimicry attacks [105] [99] [96] [98]

[32] [56] [34] reported anomaly rates for the exploits alone. Even if an exploit

were to raise no alarms, the anomalies caused by the break-in attempt (i.e. the

preamble) may cause anomalies, which – depending upon the attack and the

vulnerable application – can become obvious [46] [47]. Furthermore, the transi-

tion from preamble to exploit may also produce anomalous behaviour [98] [47].

Therefore, including preambles and employing additional metrics such as de-

lays and exploit lengths provides a better perspective for detection. Basing the

vulnerability testing upon these additional metrics potentially can reveal future

272

attacker trends such as deploying longer exploits or distributing the anomalies

to minimize delays.

5. Analysis of the Attacks. In the case of evading anomaly detectors using

mimicry attacks, the attacks provide a valuable source of data which can be

utilized as a guideline for improving anomaly detectors or for developing new

detection techniques which are robust in preventing mimicry attacks. To this

end, this thesis tests mimicry attacks which are trained on a detector, against

numerous other anomaly detectors. The mimicry attack which can evade nu-

merous detectors presents a critical security flaw which needs to be addressed

by detector developers. The set of attacks generated can be utilized as well

to create attack datasets which the researchers can employ to build detectors

which are robust against evasion attacks. Furthermore, this thesis discusses the

search space sizes for both ‘black-box’ and ‘white-box’ approaches. Search space

analysis provides an upper limit on the number of candidate solutions (i.e. the

number of attacks), given the problem definition.

6. Multi-objective Optimization. In mimicry attacks, besides the anomaly

rate of the exploit, there are various characteristics which affect the success of

the attack. For example, even if an exploit raises no alarms, the anomaly rate

from the preamble should be included as well in order to calculate the anomaly

rate of the attack. Furthermore, in the case of a long and anomalous preamble,

the attacker can increase the length of the exploit to reduce the anomaly rate.

Since the anomaly rate is calculated continuously as the attack progresses, ap-

pending a low or zero anomaly exploit will reduce the total anomaly rate in

time. Furthermore, the experiments on pH indicated that delay is an effective

method for stopping the attacks, therefore the attacker should aim to generate

attacks which will keep the locality frame count low. Various other factors,

such as the vulnerable buffer size, the target detector and the nature of the

exploit may introduce new objectives/constraints which the attacker needs to

consider. By employing Evolutionary Computation with multi-objective op-

timization support vulnerability testing efforts can investigate how different

273

factors affect the success of the evasion attacks. In turn, the detectors can be

improved accordingly to be sensitive to attack attributes beyond the anomaly

rate.

11.2 Discussion of Results

As discussed in Chapter 2, a typical stack buffer overflow attack consists of three

components:

1. the NoOP sled;

2. the shellcode, which executes the system calls which achieve the attack goals;

3. the approximated return addresses which overwrite the EIP and divert the

execution to the NoOP sled or the first instruction of the shellcode.

In order to investigate thoroughly the task of generating buffer overflow attacks

automatically using Evolutionary Computation, the following characteristics of the

stack buffer overflow attacks were considered for optimization:

1. the length of the NoOP sled and the accuracy of the approximated return

addresses (Chapter 6);

2. shellcode design at the assembly level (Chapter 7);

3. shellcode design at the system call level (Chapters 8, 9 and 10).

To address the improvements of the above-mentioned characteristics separately,

three frameworks were introduced. In the first framework, utilizing Grammatical

Evolution in Chapter 6, the goal was to modify certain attack characteristics to

minimize chances of detection by a misuse detector. Particularly, a block of NoOP

instructions (i.e. the NoOP sled) presents a detectable pattern, therefore from an

attacker’s perspective, an attack with a shorter NoOP sled is desirable. However, in

order to be able to use shorter NoOP sleds, the attack needs to make more accurate

estimations of the return address. Therefore, the objective of the first framework was

274

to evolve malicious buffers which could deploy successfully with smaller NoOP blocks

and more accurate return address approximations.

The results of Chapter 6 in optimizing buffer overflow characteristics to evade

misuse detectors demonstrated that the framework can discover NoOP length and

return address combinations which can evade the Snort misuse detector. A close look

at the detector logs indicated that the attacks were detected by a signature which

looks for long blocks of NoOP instructions, hence the best GE attack, which could

deploy with only one NoOP instruction, could evade detection easily. The experiments

in Chapter 7 utilized niching to encourage diversity in the population. In other words,

the individuals were rewarded for crafting buffer overflows with different NoOP sled

sizes and different numbers of approximated return addresses. In particular, three

sets of experiments were conducted: (1) Basic GE, (2) GE with niching, and (3) GE

with niching and NoOP minimization, where the successful individuals were awarded

additional points for minimizing the NoOP sled length. In summary, the results

indicated that GE can optimize the NoOP sled length and return address accuracy

to bypass the Snort signature that monitors long sequences of NoOP instructions.

Having established the effectiveness of the proposed GE framework for evolving the

NoOP sled and the return addresses, a second framework was developed in Chapter

7 which focused on evolving the payload (i.e. the shellcode) of the attack to evade

misuse detectors and to investigate different ways for achieving the attack objectives.

In this case, the goal of the framework was to design the payload at the assembly level

in order to obfuscate the attack in such a way that it was undetectable by the misuse

detectors. The second framework employed linear Genetic Programming because

GE proved inefficient in modifying instructions due to its representation scheme. In

particular, a single genome change near the beginning of the individual in GE causes

the remaining genomes to be mapped differently, hence causing major changes in the

program it produces. On the other hand, in linear GP, change in a genome causes that

particular instruction to change, which provides the framework with a more efficient

search method.

The results in evolving buffer overflow attacks against misuse detectors in Chapter

7, demonstrate that the code bloat property of GP provides a means of hiding the

275

true intent of the attack by mixing the exploit instructions with the introns which

do not contribute explicitly to the functional properties of the attack. Furthermore,

the results indicated that GP is effective at finding alternate ways of achieving attack

objectives, hence implementing the core attack with different instructions. The exper-

iments focused on utilizing different instruction sets which consisted of basic control

instructions, arithmetic instructions and logic instructions. Moreover, this research

investigated the use of an additional objective for improving the likelihood of the

execution of the attack where the GP was encouraged to place the attack instructions

as close to the end of the buffer as possible. In this way, even though the execution

jumps into somewhere other than the first instruction of the shellcode, the attack can

still be deployed successfully. The resulting attacks were passed through the Snort

misuse detector where the detector contained the most recent shellcode signatures

which could detect certain sub-goals of the attack, such as pushing ‘/bin/sh’ to the

stack. By utilizing different instructions and reordering the sub-goals, the attacks

generated by GP evaded detection by Snort.

Sharing a similar objective with Chapter 7, Chapter 8 approaches the task of

evolving the payload at a higher level. Having established that linear GP can evolve

payload at the assembly level in Chapter 7, the aim of the third framework was to

evolve the payload at the system call level. System calls facilitate the interaction

of UNIX applications with the operating system kernel, therefore anomaly detectors

monitor the system calls which the applications make to detect any deviations from

established normal behaviour. Therefore, the objective of the framework was to

discover sequences of system calls which could deploy the attack successfully while

conforming to the normal behaviour definition of the detector. The resulting attacks

are called mimicry attacks since they mimic normal behaviour. Most previous work

on mimicry attacks [105] [99] [96] [98] [32] [56] [34] assumed a ‘white-box’ access

to the detector, which implies that the attacker has access to the normal database

and internal data structures of the detectors. This resulted in the employment of

various exhaustive search methods on the normal database of the target detector. On

the other hand, the proposed ‘black-box’ approach aimed to evolve mimicry attacks

based only upon the anomaly rate returned by the detector. The proposed approach

276

demonstrated that evading detectors do not require an in-depth understanding of the

target detector. A ‘black-box’ technique is feasible as long as the evasion attacks can

be suitably parameterized.

The experiments on evolving mimicry attacks against anomaly detectors in Chap-

ter 8 consisted of five different anomaly detectors, namely the Stide, pH, pH with

a schema mask (pHsm), Markov Model and Neural Network detectors monitoring

the traceroute, restore, samba and ftpd applications. The results demonstrated that

linear GP succeeds in reducing the anomaly rate of the attacks by utilizing just the

anomaly rate returned by the detector. This implies that although it represents a sub-

stantially more difficult problem, limiting the knowledge of the detector to the ‘black-

box’ level does not prevent the identification of attacks which are equally effective as

a ‘white-box’ model for the same detector. Assuming a ‘black-box’ access extends the

application of vulnerability testing beyond the cases where internal knowledge of the

detector is required. The results showed that standard EC methods can succeed in

finding evasion attacks, which can largely circumvent the detection techniques that

are either in wide use or have been studied extensively in the literature. Furthermore,

the proposed approach should generalize to numerous other computer defenses. Fur-

thermore, mimicry attacks have various characteristics which the attacker needs to

consider, such as attack success, anomaly rate of the attack, attack length and delays

which the detector imposes on the attack. Therefore, Pareto ranking was employed

in the experiments detailed in Chapter 8 to facilitate multi-objective optimization.

Furthermore, it is apparent that evading anomaly detectors can be more difficult

than previously believed [105] [99] [96] [98] [32] [56] [34] due to the attacker’s lack of

control over the system calls which execute before the attacker’s shellcode is invoked.

Previous work [105] [99] [96] [98] [32] [56] [34] reported anomaly rates on the exploit

alone without considering the anomaly rate for the preamble. The results in Chapter

8 established that even if the attacker created an exploit with a 0% anomaly rate, the

corresponding attacks, which included the anomalies from the preamble, would be

more than 0%. The effects of the preamble are magnified especially if the preamble

is long and anomalous. Moreover, within the scope of this framework, this thesis

investigated the importance of training sets in anomaly detectors, where the results

277

indicated that the anomaly rates of the detectors are fairly sensitive to the training

data employed for establishing the normal behaviour database.

Additionally, the experiment results in Chapter 8 demonstrated that a delay as-

sociated with locality frame counts is an effective way to stop an attack. Even if the

attack achieved low anomaly rates, it can be frozen in effect if the anomalies were

clustered together. In particular, mimicry attacks against samba have low anomaly

rates yet the delays associated with them are billions of centuries in length. There-

fore, by incorporating the system call parameters in detection and employing metrics

to measure the dispersion of anomalies like the locality frame count in pH, the de-

tectors can be more robust against mimicry attacks. Nevertheless, should the delays

associated with the locality frame count be employed in the real-world, reducing false

positives in the detector deserves further attention since legitimate behaviour which

is unknown to the detector could cause substantial delays.

Furthermore, Sections 6.2.4, 7.2.4 and 8.2.4 provide discussions on search space

sizes. The discussions indicated that evolving mimicry attacks at the system call

level has the largest search space size for two reasons. First, the GP individuals rep-

resenting mimicry attacks are longer than those representing malicious buffers and

assembly level shellcode. Second, evolving mimicry attacks at the system call level

requires more instructions, hence increasing the possible values which an instruction

can take. Section 9.3.6 provides a discussion of the ‘white-box’ search space and com-

pares it with the ‘black-box’ search space (Section 8.2.4). The comparison reveals

that a common aspect of the previous ‘white-box’ approaches [105] [99] [96] [98] [32]

[56] [34] was to employ the ‘internal’ detector knowledge to reduce the search space

so that an exhaustive search could be performed. On the other hand, even though

the proposed approach adopts a ‘black-box’ methodology, it succeeds in generating

mimicry attacks which are comparable to ‘white-box’ mimicry attacks without em-

ploying any ‘internal’ detector knowledge available under a ‘white-box’ assumption.

In Chapter 9, the mimicry attacks generated in Chapter 8 were employed in an

analysis which extends the experiments detailed in Chapter 8 in two ways. Firstly,

as opposed to deploying the mimicry attacks only against the detector on which they

were trained, the mimicry attacks were deployed against all five anomaly detectors.

278

Such an analysis aimed to investigate whether the mimicry attacks could generalize

to the detectors for which they were not trained. The results indicated that, to

a certain extent, mimicry attacks can produce low anomaly rates when they are

deployed against other detectors, especially if the detection mechanism is similar and

if the detector on which they were trained employed a longer sliding window length

than the detector on which they were tested.

Secondly, Chapter 9 makes a comparison between the mimicry attacks which are

generated by the proposed ‘black-box’ GP approach and the ‘white-box’ exhaustive

search approaches, which the relevant work is based upon. The results indicate that

although a ‘black-box’ access formulates a more difficult problem due to limited feed-

back from the detector, the resulting attacks provide anomaly rates comparable to the

anomaly rates of the ‘white-box’ attacks. Moreover, it is important to note that sepa-

rate ‘white-box’ exhaustive search approaches need to be developed for each detector

since ‘white-box’ assumptions make use of the internal structures of the detector,

which are very likely to be specific to the detector at hand. On the other hand, the

proposed ‘black-box’ approach has the considerable advantage of being able to deploy

against all five anomaly detectors without any changes.

Chapter 10 focuses on the analysis of the vulnerable applications which were em-

ployed in generating mimicry attacks in this thesis. The purpose of the analysis was

to identify the characteristics of each application in terms of normal database lengths,

number of system calls and the distribution of system calls which they utilize during

normal operation. The results demonstrate that applications have different character-

istics. For instance, applications providing service over a network utilize more system

calls, which may provide the attacker with a wider normal behaviour within which to

hide malicious intentions. Furthermore, the distribution of system calls varies since

some applications use a smaller set of system calls very frequently. Consequently, the

attacks generated by the proposed approach employ different techniques and system

calls while hiding the true intent of the attack.

279

11.3 Guidelines for Detector Research

Mimicry attacks have various characteristics beyond anomaly rates which can affect

their success. Even if an attack has a zero anomaly rate exploit, if the preamble

is lengthy and produces several anomalies, it can be detected easily. Furthermore,

even if both the preamble and the exploit raise very few alarms, if the anomalies

are clustered together they can cause an increase in the locality frame count, hence

effectively ‘freezing’ the attack. Another method which an attacker can employ to

minimize the anomaly rate of an attack with a detectable preamble is to employ a

longer exploit which raises fewer or no alarms, hence injecting more normal behaviour

to obfuscate the anomalies. In the light of these observations, mimicry attack and

vulnerability testing research should move from focusing on the anomaly rate alone

to incorporating multiple characteristics such as the preamble and exploit length,

locality frame counts and the associated delays

The experiments discussed in this thesis indicate that a better detection methodol-

ogy is clearly necessary and several developments are possible. The current detectors

have failed because they make the assumption that the sequence of system calls pro-

vides a suitable discriminator between normal and attack behaviours. This is clearly

the wrong behavioural trait. Instead, the sequence of objectives which are used to

establish a valid attack during the automation of mimicry attacks can be employed

for the detection as well. That is to say, critical activities for detecting exploits are

associated with attempts to access the password file or other critical system resources.

A state machine capable of detecting this behaviour has a very simple representation

and makes use of system call arguments to check the intention of the three critical

commands (open-write-close). Consequently, the arguments of the system calls can be

employed to distinguish between malicious and ‘normal’ behaviours. A goal for future

research might be to provide a method for automating the design of such detectors

and associating them with critical (that is privileged) computing system resources.

An alternative to the current state-of-the-art detection methodologies would be

to move away from associating detectors with applications toward associating detec-

tors with the objectives of an attack. In such a setting, mimicry attack generation

would take the form of conducting searches for command sequences which provide

280

alternative means for establishing specific goals (the information hiding aspect not

being as important because the detector is designed to ignore the vast majority of the

instruction sequence, i.e. normal behaviour) and then a detector would take the form

of modelling state spaces associated explicitly with compromising a target resource.

Such a scheme would be more scalable than current approaches which concentrate on

patching detecting in applications. Moreover, the detector would be able to play a

more proactive role by predicting which step in the attack might appear next.

11.4 Future Research Directions

The proposed approach can be utilized in numerous ways to improve the current state-

of-art in intrusion detection. First, it is a valuable vulnerability testing tool that can

evolve attacks against a detector while employing a ’black-box’ assumption. The

detector developers can analyse the detection rate of the evolved attacks to identify

any potential detector vulnerabilities. In a way, the proposed approach works to

predict the possible variants of current vulnerabilities/attacks with a view to creating

vaccines to the predicted attacks before they occur. The benefit would be that the

defenders would no longer have to be one step behind the attackers.

The second and the more promising application of the proposed approach is to

formulate an ‘arms race’ between attackers and detectors for different types of attacks

as well. Moreover, adaptive detection methods will be employed to facilitate a co-

evolutionary arms race where the attackers are rewarded as they defeat the detectors

and, similarly, the detectors are rewarded as they adapt and ‘learn’ to detect the

evasion attacks. Such an arms race will not only allow the defenders to identify the

detector weaknesses but also enable the detectors to generalize beyond recognizing

only a single instance of an attack hence freeing the detectors from working in a

purely reactive manner.

Such an arms race can contribute to the security research mainly in three ways.

First, by building robust detectors, which generalize beyond recognizing the specific

instance of a single attack, variants of a core attack can be detected long before the

variants are encountered. Second, detectors will be easier to update and maintain

281

since the arms race provides a modular detector design where a community of detec-

tors provides coverage for numerous variants of a core attack. Third, the resulting

evasion attacks can provide an attack database to the research community, which can

be employed in detector vulnerability testing to determine detector blind spots.

An analogy can be drawn from flu vaccination research. Every year, researchers

try to anticipate the possible strains of the flu virus which are most likely to affect

people in the following flu season by analysing the flu viruses which have been seen up

to that point in time. Based upon this analysis, predictions are made and flu vaccines

are prepared for the following season. An arms race between attackers and detectors

could enable researchers to follow a similar intervention against the attackers in order

to strengthen the defense mechanisms for computer security.

Bibliography

[1] Julia Allen, Alan Christie, William Fithen, John McHugh, Jed Pickel, James
Ellis, Eric Hayes, Jerome Marella, and Bradford Willke. State of the practice
of intrusion detection technologies. Technical report, Carnegie Mellon Software
Engineering Institute, 2000.

[2] SecurityFocus Vulnerability Archives. Lbnl traceroute heap corruption vulner-
ability. http://www.securityfocus.com/bid/1739, Last accessed June 2008.

[3] SecurityFocus Vulnerability Archives. Redhat linux restore insecure environ-
ment variables vulnerability. http://www.securityfocus.com/bid/1914, Last
accessed June 2008.

[4] SecurityFocus Vulnerability Archives. Samba ‘call trans2open’ remote buffer
overflow vulnerability. http://www.securityfocus.com/bid/7294, Last ac-
cessed June 2008.

[5] SecurityFocus Vulnerability Archives. Wu-ftpd remote format string stack over-
write vulnerability. http://www.securityfocus.com/bid/1387, Last accessed
June 2008.

[6] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin.
Genetic programming: an introduction: on the automatic evolution of com-
puter programs and its applications. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

[7] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximiza-
tion technique occurring in the statistical analysis of probabilistic functions of
markov chains. The Annals of Mathematical Statistics, 41(1):164–171, 1970.

[8] Konstantin Boldyshev. List of linux/i386 system calls.
http://asm.sourceforge.net/syscall.html, 2000.

[9] Julien Budynek, Eric Bonabeau, and Ben Shargel. Evolving computer intrusion
scripts for vulnerability assessment and log analysis. In GECCO ’05: Proceed-
ings of the 2005 conference on Genetic and evolutionary computation, pages
1905–1912, New York, NY, USA, 2005. ACM.

[10] Bulba and Kil3r. Bypassing stackguard and stackshield. Phrack Online Maga-
zine, Volume 0x05, Issue 0x10, January 2000.

[11] John M. Chambers, William S. Cleveland, and Paul A. Tukey. Graphical meth-
ods for data analysis. Wadsworth, 1983.

282

http://www.securityfocus.com/bid/1739
http://www.securityfocus.com/bid/1914
http://www.securityfocus.com/bid/7294
http://www.securityfocus.com/bid/1387
http://asm.sourceforge.net/syscall.html

283

[12] Steve Christey and Robert A. Martin. Vulnera-
bility type distributions in cve. MITRE Website
http://cwe.mitre.org/documents/vuln-trends/index.html, May 2007.

[13] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect
malicious patterns. In Proceedings of the 12th conference on USENIX Security
Symposium, 2003.

[14] Carlos A. Coello Coello. Evolutionary multi-objective optimization: a historical
view of the field. Computational Intelligence Magazine, IEEE, 1(1):28–36, Feb.
2006.

[15] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stack-
guard: automatic adaptive detection and prevention of buffer-overflow attacks.
In SSYM’98: Proceedings of the 7th conference on USENIX Security Sympo-
sium, 1998, pages 5 – 5, Berkeley, CA, USA, 1998. USENIX Association.

[16] Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T. Chong. On
deriving unknown vulnerabilities from zero-day polymorphic and metamorphic
worm exploits. In CCS ’05: Proceedings of the 12th ACM conference on Com-
puter and communications security, pages 235–248, New York, NY, USA, 2005.
ACM.

[17] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Real-world buffer over-
flow protection for userspace and kernelspace. In Proceedings of the 17th Usenix
Security Symposium, San Jose, CA, July 2008.

[18] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[19] Kalyanmoy Deb and David E. Goldberg. An investigation of niche and species
formation in genetic function optimization. In Third international conference
on Genetic algorithms, pages 42–50, 1989.

[20] Dorothy E. Denning. An intrusion detection model. IEEE Transactions on
Software Engineering, 13(2):222–232, 1987.

[21] Maura A. Van der Linden. Testing Code Security. Auerbach Publications,
Boston, MA, USA, 2007.

[22] Theo Detristan, Tyll Ulenspiegel, Yann Malcom, and Mynheer Superbus Von
Underduk. Polymorphic shellcode engine using spectrum analysis. Phrack On-
line Magazine, Volume 0x0b, Issue 0x3d, August 2003.

http://cwe.mitre.org/documents/vuln-trends/index.html

284

[23] Gerry Dozier, Douglas Brown, Haiyu Hou, and John Hurley. Vulnerability
analysis of immunity-based intrusion detection systems using genetic and evo-
lutionary hackers. Appl. Soft Comput., 7(2):547–553, 2007.

[24] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary Comput-
ing. Springer, 2003.

[25] Jon Erickson. Hacking: The Art of Exploitation. No Starch Press, 2003.

[26] Henry Hanping Feng, Jonathon T. Giffin, Yong Huang, Somesh Jha, Wenke
Lee, and Barton P. Miller. Formalizing sensitivity in static analysis for intrusion
detection. Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on,
pages 194–208, May 2004.

[27] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee, and
Weibo Gong. Anomaly detection using call stack information. In SP ’03:
Proceedings of the 2003 IEEE Symposium on Security and Privacy, page 62,
Washington, DC, USA, 2003. IEEE Computer Society.

[28] Carlos M. Fonseca and Peter J. Fleming. Genetic algorithms for multiobjec-
tive optimization: Formulation discussion and generalization. In Proceedings of
the 5th International Conference on Genetic Algorithms, pages 416–423, San
Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[29] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. The evolution of
system-call monitoring. Annual Computer Security Applications Conference,
2008. ACSAC 2008, pages 418–430, Dec. 2008.

[30] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A sense of self for unix processes. In SP ’96: Proceedings of the
1996 IEEE Symposium on Security and Privacy, page 120, Washington, DC,
USA, 1996. IEEE Computer Society.

[31] James C. Foster, Vitaly Osipov, and Nish Bhalla. Buffer Overflow Attacks.
Syngress Publishing, 2005.

[32] Debin Gao, Michael K. Reiter, and Dawn Song. Gray-box extraction of ex-
ecution graphs for anomaly detection. In CCS ’04: Proceedings of the 11th
ACM conference on Computer and communications security, pages 318–329,
New York, NY, USA, 2004. ACM.

[33] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance measure-
ment using hidden markov models. In Proceedings of the 9th International
Symposium on Recent Advances in Intrusion Detection - RAID, Lecture Notes
in Computer Science, LNCS 4219, pages 19–40, 2006.

285

[34] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Automated discovery of
mimicry attacks. In Recent Advances in Intrusion Detection, 9th International
Symposium, RAID 2006, volume 4219 of Lecture Notes in Computer Science,
pages 41–60. Springer, 2006.

[35] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, 1989.

[36] Sang-Jun Han and Kyung-Joong Kim Sung-Bae Cho. Evolutionary learning
program’s behavior in neural networks for anomaly detection. In Neural Infor-
mation Processing, ICONIP 2004, LNCS 3316, pages 236–241. Springer Berlin
/ Heidelberg, 2004.

[37] Malcolm I. Heywood and A. Nur Zincir-Heywood. Dynamic page based
crossover in linear genetic programming. Systems, Man, and Cybernetics, Part
B, IEEE Transactions on, 32(3):380–388, Jun 2002.

[38] Hajime Inoue and Anil Somayaji. Lookahead pairs and full sequences: A tale of
two anomaly detection methods. In Proceedings of the 2nd Annual Symposium
on Information Assurance (Academic track of the 10th NYS Cyber Security
Conference), June 2007.

[39] Intel Corporation. IA-32 Intel, Architecture Software Developer’s Manual Vol-
umes 2A, 2B: Instruction Set Reference, A-M, M-Z, 2005.

[40] Nathalie Japkowicz, Catherine Myers, and Mark Gluck. A novelty detection
approach to classification. In In Proceedings of the Fourteenth Joint Conference
on Artificial Intelligence, pages 518–523, 1995.

[41] Josh Jones and Terry Soule. Comparing genetic robustness in generational vs.
steady state evolutionary algorithms. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, pages 143–150,
New York, NY, USA, 2006. ACM.

[42] Cem Kaner. Testing Computer Software. TAB Books, Blue Ridge Summit, PA,
USA, 1988.

[43] Dae-Ki Kang, Doug Fuller, and Vasant Honavar. Learning classifiers for misuse
and anomaly detection using a bag of system calls representation. Information
Assurance Workshop, 2005. IAW ’05. Proceedings from the Sixth Annual IEEE
SMC, pages 118–125, June 2005.

[44] Hilmi Güneş Kayacık, Malcolm Heywood, and Nur Zincir-Heywood. On evolv-
ing buffer overflow attacks using genetic programming. In GECCO ’06: Pro-
ceedings of the 8th annual conference on Genetic and evolutionary computation,
pages 1667–1674, New York, NY, USA, 2006. ACM.

286

[45] Hilmi Güneş Kayacık, Malcolm I. Heywood, and A. Nur Zincir-Heywood.
Evolving buffer overflow attacks with detector feedback. In Applica-
tions of Evolutinary Computing, EvoWorkshops 2007: EvoCoMnet, EvoFIN,
EvoIASP,EvoINTERACTION, EvoMUSART, EvoSTOC and EvoTransLog,
volume 4448 of Lecture Notes in Computer Science, pages 11–20. Springer,
2007.

[46] Hilmi Güneş Kayacık and A. Nur Zincir-Heywood. On the contribution of
preamble to information hiding in mimicry attacks. In AINAW ’07: Proceedings
of the 21st International Conference on Advanced Information Networking and
Applications Workshops, pages 632–638, Washington, DC, USA, 2007. IEEE
Computer Society.

[47] Hilmi Güneş Kayacık and A. Nur Zincir-Heywood. Mimicry attacks demystified:
What can attackers do to evade detection? In PST ’08: Proceedings of the
2008 Sixth Annual Conference on Privacy, Security and Trust, pages 213–223,
Washington, DC, USA, 2008. IEEE Computer Society.

[48] Hilmi Güneş Kayacık, A. Nur Zincir-Heywood, and Malcolm Heywood. Evolv-
ing successful stack overflow attacks for vulnerability testing. In ACSAC ’05:
Proceedings of the 21st Annual Computer Security Applications Conference,
pages 225–234, Washington, DC, USA, 2005. IEEE Computer Society.

[49] Hilmi Güneş Kayacık, A. Nur Zincir-Heywood, and Malcolm I. Heywood. Au-
tomatically evading ids using gp authored attacks. Computational Intelligence
in Security and Defense Applications, 2007. CISDA 2007. IEEE Symposium
on, pages 153–160, April 2007.

[50] Hilmi Güneş Kayacık and Nur Zincir-Heywood. Generating representative traf-
fic for intrusion detection system benchmarking. In CNSR ’05: Proceedings of
the 3rd Annual Communication Networks and Services Research Conference,
pages 112–117, Washington, DC, USA, 2005. IEEE Computer Society.

[51] Richard Kemmerer and Giovanni Vigna. Intrusion detection: a brief history
and overview. Computer, 35(4):27–30, Apr 2002.

[52] Andrew P. Kosoresow and Steven A. Hofmeyr. Intrusion detection via system
call traces. IEEE Softw., 14(5):35–42, 1997.

[53] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, 1992.

[54] Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren, Neel Mehta,
and Riley Hassell. The Shellcoder’s Handbook: Discovering and Exploiting Se-
curity Holes. Wiley Publishing Inc., 2004.

287

[55] Mark A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE Journal, pages 233–243, 1991.

[56] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Gio-
vanni Vigna. Automating mimicry attacks using static binary analysis. In
SSYM’05: Proceedings of the 14th conference on USENIX Security Symposium,
pages 161–176, Berkeley, CA, USA, 2005. USENIX Association.

[57] Rajeev Kumar and Peter Rockett. Improved sampling of the pareto-front in
multiobjective genetic optimizations by steady-state evolution: a pareto con-
verging genetic algorithm. Evol. Comput., 10(3):283–314, 2002.

[58] William B. Langdon. Genetic Programming and Data Structures: Genetic Pro-
gramming + Data Structures = Automatic Programming! Kluwer, 1998.

[59] William B. Langdon and Riccardo Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[60] Junmyung Lee, Sungzoon Cho, and Jinwoo Baek. Trend detection using auto-
associative neural networks: Intraday kospi 200 futures. Computational Intel-
ligence for Financial Engineering, 2003. Proceedings. 2003 IEEE International
Conference on, pages 417–420, March 2003.

[61] David D. Lewis. Reuters-21578 text categorization test collection.
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html,
September 1997.

[62] Peng Li, Hyundo Park, Debin Gao, and Jianming Fu. Bridging the gap between
data-flow and control-flow analysis for anomaly detection. Annual Computer
Security Applications Conference, 2008. ACSAC 2008., pages 392–401, Dec.
2008.

[63] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and
Kumar Das. Analysis and results of the 1999 darpa off-line intrusion detection
evaluation. In RAID ’00: Proceedings of the Third International Workshop
on Recent Advances in Intrusion Detection, pages 162–182, London, UK, 2000.
Springer-Verlag.

[64] Larry Manevitz and Malik Yousef. One-class document classification via neural
networks. Neurocomput., 70(7-9):1466–1481, 2007.

[65] Markos Markou and Sameer Singh. Novelty detection: a review—part 1: sta-
tistical approaches. Signal Process., 83(12):2481–2497, 2003.

[66] Raffael Marty. Thor: A tool to test intrusion detection systems by variations
of attacks. Master’s thesis, Swiss Federal Institute of Technology, 2002.

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

288

[67] Andrew R. McIntyre. Novelty Detection + Coevolution = Automatic Problem
Decomposition: A Framework For Scalable Genetic Programming Classifiers.
PhD thesis, Dalhousie University, November 2007.

[68] Brad L. Miller and Michael J. Shaw. Genetic algorithms with dynamic niche
sharing for multimodal function optimization. Technical report, University
Of Illinois at Urbana-Champaign, Dept. General Engineering, IlliGAL Report
95010, 1995.

[69] Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1996.

[70] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA, USA, 1998.

[71] Robert T. Morris. A weakness in the 4.2bsd unix tcp/ip software.

[72] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher Kruegel.
Anomalous system call detection. ACM Trans. Inf. Syst. Secur., 9(1):61–93,
2006.

[73] Darren Mutz, Giovanni Vigna, and Richard Kemmerer. An experience devel-
oping an ids stimulator for the black-box testing of network intrusion detection
systems. In ACSAC ’03: Proceedings of the 19th Annual Computer Security Ap-
plications Conference, page 374, Washington, DC, USA, 2003. IEEE Computer
Society.

[74] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley
& Sons, 2004.

[75] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), November
1996.

[76] Michael O’Neill and Conor Ryan. Grammatical Evolution Evolutionary Auto-
matic Programming in an Arbitrary Language. Kluwer, 2003.

[77] Chetan Parampalli, R. Sekar, and Rob Johnson. A practical mimicry attack
against powerful system-call monitors. In ASIACCS ’08: Proceedings of the
2008 ACM symposium on Information, computer and communications security,
pages 156–167, New York, NY, USA, 2008. ACM.

[78] Ron Patton. Software Testing (2nd Edition). Sams, Indianapolis, IN, USA,
2005.

[79] Udo Payer, Peter Teufl, and Mario Lamberger. Hybrid engine for polymor-
phic shellcode detection. In Intrusion and Malware Detection and Vulnerability
Assessment, LNCS-3548, pages 19–31. Springer Berlin / Heidelberg, 2005.

289

[80] Cyrus Peikari and Anton Chuvakin. Security Warrior. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2004.

[81] Doron A. Peled, David Gries, and Fred B. Schneider, editors. Software reliability
methods. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.

[82] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of
service: Eluding network intrusion detection. Technical report, Secure Networks
Inc., 1998.

[83] Quan Qian and Mingjun Xin. Research on hidden markov model for system
call anomaly detection. In Intelligence and Security Informatics, Pacific Asia
Workshop, PAISI 2007, Chengdu, China, April 11-12, 2007, Proceedings, vol-
ume 4430 of Lecture Notes in Computer Science, pages 152–159. Springer, 2007.

[84] Lawrence R. Rabiner. A tutorial on hidden markov models and selected appli-
cations in speech recognition. Readings in speech recognition, pages 267–296,
1990.

[85] Michael Rash, Angela D. Orebaugh, Graham Clark, Becky Pinkard, and Jake
Babbin. Intrusion Prevention and Active Response: Deploying Network and
Host IPS. Syngress Publishing, 2005.

[86] Isidore Rigoutsos and Aris Floratos. Combinatorial pattern discovery in bio-
logical sequences: The teiresias algorithm. Bioinformatics, 14(1):55–67, 1998.

[87] Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceed-
ings of Thirteenth Systems Administration Conference – LISA, pages 229–238,
1999.

[88] Shai Rubin, Somesh Jha, and Barton P. Miller. Automatic generation and anal-
ysis of nids attacks. In ACSAC ’04: Proceedings of the 20th Annual Computer
Security Applications Conference, pages 28–38, Washington, DC, USA, 2004.
IEEE Computer Society.

[89] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In SP ’01: Proceedings
of the 2001 IEEE Symposium on Security and Privacy, page 144, Washington,
DC, USA, 2001. IEEE Computer Society.

[90] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address-space randomization. In CCS
’04: Proceedings of the 11th ACM conference on Computer and communications
security, pages 298–307, New York, NY, USA, 2004. ACM.

290

[91] Anil Buntwal Somayaji. Operating system stability and security through process
homeostasis. PhD thesis, The University of New Mexico, 2002. Chairperson:
Stephanie Forrest.

[92] Sherri Sparks, Shawn Embleton, Ryan Cunningham, and Cliff Zou. Automated
vulnerability analysis: Leveraging control flow for evolutionary input crafting.
In 23rd Annual Computer Security Applications Conference (ACSAC 2007),
December 10-14, 2007, Miami Beach, Florida, USA, pages 477–486. IEEE Com-
puter Society, 2007.

[93] Richard M. Stallman and the GCC Developer Community. Gnu compiler col-
lection internals. http://gcc.gnu.org/onlinedocs/, 2008.

[94] Sufatrio and Roland H.C. Yap. Improving host-based ids with argument ab-
straction to prevent mimicry attacks. In Recent Advances in Intrusion Detection
(RAID 2005), volume LNCS 3858, pages 146 – 164, 2006.

[95] Peter Szor. The Art of Computer Virus Research and Defense. Addison-Wesley
Professional, 2005.

[96] Kymie M. C. Tan, Kevin S. Killourhy, and Roy A. Maxion. Undermining an
anomaly-based intrusion detection system using common exploits. In Proceed-
ings of the 5th International Symposium on Recent Advances in Intrusion De-
tection - RAID, Lecture Notes in Computer Science, LNCS 2516, pages 54–73,
2002.

[97] Kymie M. C. Tan and Roy A. Maxion. ”why 6?” defining the operational limits
of stide, an anomaly-based intrusion detector. In SP ’02: Proceedings of the
2002 IEEE Symposium on Security and Privacy, page 188, Washington, DC,
USA, 2002. IEEE Computer Society.

[98] Kymie M. C. Tan and Roy A. Maxion. Determining the operational limits of
an anomaly-based intrusion detector. Selected Areas in Communications, IEEE
Journal on, 21(1):96–110, Jan 2003.

[99] Kymie M. C. Tan, John McHugh, and Kevin S. Killourhy. Hiding intrusions:
From the abnormal to the normal and beyond. In IH ’02: Revised Papers from
the 5th International Workshop on Information Hiding, pages 1–17, London,
UK, 2003. Springer-Verlag.

[100] Adam D. Todd, Richard A. Raines, Rusty O. Baldwin, Barry E. Mullins, and
Steven K. Rogers. Alert verification evasion through server response forging.
In Recent Advances in Intrusion Detectio, volume LCNS 4637, pages 256–275,
2007.

[101] Vangelis. Stack-based overflow exploit: Introduction to classical and advanced
overflow technique. Wowhacker via Neworder, December 2004.

http://gcc.gnu.org/onlinedocs/

291

[102] Giovanni Vigna, William Robertson, and Davide Balzarotti. Testing network-
based intrusion detection signatures using mutant exploits. In CCS ’04: Pro-
ceedings of the 11th ACM conference on Computer and communications secu-
rity, pages 21–30, New York, NY, USA, 2004. ACM.

[103] David Wagner and Drew Dean. Intrusion detection via static analysis. In SP
’01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, page
156, Washington, DC, USA, 2001. IEEE Computer Society.

[104] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A
first step towards automated detection of buffer overrun vulnerabilities. In In
Network and Distributed System Security Symposium, pages 3–17, 2000.

[105] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detec-
tion systems. In CCS ’02: Proceedings of the 9th ACM conference on Computer
and communications security, pages 255–264, New York, NY, USA, 2002. ACM.

[106] GDB: The GNU Project Debugger Website.
http://www.gnu.org/software/gdb/, Last accessed October 2008.

[107] Snort Website. http://www.snort.org, Last accessed June 2008.

[108] Stack Shield Website. http://www.angelfire.com/sk/stackshield/, Last
accessed August 2008.

[109] Stide Website. Source code of stide and system call data sets.
http://www.cs.unm.edu/~immsec/systemcalls.htm, Last accessed June
2008.

[110] Andreas Wespi, Marc Dacier, and Hervé Debar. Intrusion detection using
variable-length audit trail patterns. In RAID ’00: Proceedings of the Third
International Workshop on Recent Advances in Intrusion Detection, pages 110–
129, London, UK, 2000. Springer-Verlag.

[111] Wolfgang J.H. Wickler. Mimicry. In In Ency-
clopaedia Britannica. Encyclopaedia Britannica Online:
http://www.britannica.com/EBchecked/topic/383252/mimicry, 2009.

[112] Ian Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, October 1999.

[113] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler.
Automatically generating malicious disks using symbolic execution. In SP ’06:
Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages 243–
257, Washington, DC, USA, 2006. IEEE Computer Society.

http://www.gnu.org/software/gdb/
http://www.snort.org
http://www.angelfire.com/sk/stackshield/
http://www.cs.unm.edu/~immsec/systemcalls.htm
http://www.britannica.com/EBchecked/topic/383252/mimicry

292

[114] Dit-Yan Yeung and Yuxin Ding. Host-based intrusion detection using dynamic
and static behavioral models. Pattern Recognition, Volume 36:pages 229–243,
2002.

[115] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: A
comprehensive case study and the strength pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4):257–271, 1999.

Appendix A

Detector Training Set Analysis

A.1 Stide Training Set Analysis

The training set analysis for Stide is discussed in Section 8.4.

A.2 pH Training Set Analysis

Table A.1: Anomaly rates reported by pH with different training combinations for
traceroute

case1 case2 case3 case4 case5 attack

case1 0.00% 3.17% 8.97% 14.18% 18.75% 66.57%
case2 45.47% 0.00% 8.97% 11.19% 18.75% 66.57%
case3 81.04% 46.03% 0.00% 52.99% 18.75% 66.87%
case4 70.88% 40.48% 42.76% 0.00% 18.75% 73.43%
case5 96.70% 90.48% 83.45% 88.81% 0.00% 82.09%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 66.27%

Table A.2: Anomaly rates reported by pH with different training combinations for
samba

case1 case2 case3 case4 case5 case6 attack

case1 0.00% 4.76% 18.54% 100.00% 99.89% 36.67% 24.68%
case2 37.11% 0.00% 71.35% 73.58% 99.94% 52.80% 37.14%
case3 55.57% 56.99% 0.00% 100.00% 100.00% 73.80% 63.86%
case4 74.91% 59.38% 97.75% 0.00% 99.73% 81.63% 64.71%
case5 71.17% 53.87% 96.63% 23.05% 0.00% 77.35% 62.72%
case6 13.24% 4.46% 16.85% 71.14% 85.70% 0.00% 18.55%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 16.02%

293

294

Table A.3: Anomaly rates reported by pH with different training combinations for
restore

case1 case2 case3 case4 case5 attack

case1 0.00% 1.37% 0.00% 0.02% 8.89% 87.51%
case2 1.65% 0.00% 0.01% 0.01% 8.89% 88.53%
case3 1.02% 1.86% 0.00% 0.03% 8.89% 87.51%
case4 1.82% 0.59% 0.01% 0.00% 8.89% 88.53%
case5 98.18% 95.98% 99.98% 99.94% 0.00% 89.43%

all normal 0.00% 0.00% 0.00% 0.00% 0.00% 87.49%

295

Table A.4: Anomaly rates reported by pH with different training combinations for ftpd

case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 attack

case1 0.00% 0.02% 0.00% 2.41% 0.16% 0.02% 9.47% 0.25% 1.86% 0.25% 30.18%

case2 0.27% 0.00% 0.00% 2.18% 0.15% 0.01% 9.25% 0.00% 1.63% 0.00% 30.02%

case3 0.27% 0.00% 0.00% 2.18% 0.15% 0.01% 9.25% 0.00% 1.63% 0.00% 30.02%

case4 1.83% 0.11% 0.01% 0.00% 0.00% 0.00% 8.98% 0.00% 1.41% 0.00% 31.44%

case5 1.83% 0.11% 0.01% 0.00% 0.00% 0.00% 8.98% 0.00% 1.41% 0.00% 31.44%

case6 1.83% 0.11% 0.01% 0.00% 0.00% 0.00% 8.98% 0.00% 1.41% 0.00% 31.44%

case7 22.36% 94.70% 99.48% 22.95% 94.74% 99.48% 0.00% 15.18% 20.82% 15.18% 42.49%

case8 6.87% 70.34% 74.54% 7.80% 70.42% 74.55% 9.69% 0.00% 6.03% 0.00% 33.33%

case9 2.37% 46.74% 49.68% 2.54% 46.76% 49.68% 9.02% 0.00% 0.00% 0.00% 31.61%

case10 6.87% 70.34% 74.54% 7.80% 70.42% 74.55% 9.69% 0.00% 6.03% 0.00% 33.33%

all normal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 25.54%

296

A.3 pH with a Schema Mask Training Set Analysis

Table A.5: Anomaly rates reported by pH with a schema mask with different training
combinations for traceroute

case1 case2 case3 case4 case5 attack

case1 0.00% 6.22% 10.45% 26.83% 60.00% 82.10%
case2 61.65% 0.00% 10.45% 23.58% 60.00% 82.10%
case3 83.54% 51.04% 0.00% 57.72% 60.00% 82.41%
case4 83.54% 61.00% 58.96% 0.00% 60.00% 93.21%
case5 99.72% 99.17% 98.51% 98.37% 0.00% 98.15%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 81.79%

Table A.6: Anomaly rates reported by pH with a schema mask with different training
combinations for samba

case1 case2 case3 case4 case5 case6 attack

case1 0.00% 7.26% 23.35% 79.57% 99.88% 43.17% 27.50%
case2 43.80% 0.00% 90.42% 82.98% 99.96% 58.42% 40.25%
case3 61.04% 60.36% 0.00% 100.00% 100.00% 77.98% 66.08%
case4 99.65% 99.55% 100.00% 0.00% 99.88% 99.80% 99.18%
case5 76.61% 60.06% 100.00% 37.87% 0.00% 82.43% 66.61%
case6 17.85% 8.32% 25.75% 78.72% 85.75% 0.00% 19.14%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 16.67%

297

Table A.7: Anomaly rates reported by pH with a schema mask with different training
combinations for restore

case1 case2 case3 case4 case5 attack

case1 0.00% 2.08% 0.00% 0.04% 11.76% 96.91%
case2 2.24% 0.00% 0.02% 0.02% 11.76% 97.11%
case3 1.30% 2.68% 0.00% 0.04% 11.76% 97.11%
case4 2.37% 0.99% 0.02% 0.00% 11.76% 97.09%
case5 98.66% 97.02% 99.98% 99.96% 0.00% 98.06%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 96.77%

298

Table A.8: Anomaly rates reported by pH with a schema mask with different training combinations for ftpd

case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 attack

case1 0.00% 0.01% 0.00% 3.45% 0.23% 0.02% 12.67% 0.25% 2.60% 0.25% 30.46%

case2 0.13% 0.00% 0.00% 3.40% 0.22% 0.02% 12.63% 0.20% 2.51% 0.20% 30.43%

case3 0.13% 0.00% 0.00% 3.40% 0.22% 0.02% 12.63% 0.20% 2.51% 0.20% 30.43%

case4 2.78% 23.49% 24.85% 0.00% 23.31% 24.83% 12.63% 0.15% 2.37% 0.15% 29.39%

case5 2.65% 0.17% 0.02% 0.04% 0.00% 0.00% 12.63% 0.15% 2.32% 0.15% 29.33%

case6 2.65% 0.17% 0.02% 0.04% 0.00% 0.00% 12.63% 0.15% 2.32% 0.15% 29.33%

case7 23.09% 94.78% 99.49% 23.87% 94.83% 99.49% 0.00% 15.17% 22.15% 15.17% 45.14%

case8 8.83% 70.51% 74.56% 9.99% 70.59% 74.57% 13.04% 0.00% 7.89% 0.00% 36.48%

case9 3.18% 23.52% 24.85% 4.08% 23.58% 24.86% 12.67% 0.10% 0.00% 0.00% 26.86%

case10 8.83% 70.51% 74.56% 9.99% 70.59% 74.57% 13.04% 0.00% 7.89% 0.00% 36.48%

all normal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 20.27%

299

A.4 Markov Model Training Set Analysis

Table A.9: Anomaly rates reported by the Markov Model detector with different
training combinations for traceroute

case1 case2 case3 case4 case5 attack

case1 0.00% 0.38% 1.96% 8.33% 1.41% 39.07%
case2 11.28% 0.00% 1.96% 8.33% 0.70% 39.65%
case3 71.33% 26.15% 0.00% 8.33% 30.28% 43.15%
case4 82.61% 62.31% 43.14% 0.00% 66.90% 58.89%
case5 15.90% 10.00% 15.69% 8.33% 0.00% 40.52%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 38.78%

Table A.10: Anomaly rates reported by the Markov Model detector with different
training combinations for samba

case1 case2 case3 case4 case5 case6 attack

case1 0.00% 1.47% 4.84% 19.69% 14.42% 15.26% 11.30%
case2 13.06% 0.00% 18.28% 25.98% 28.60% 24.36% 16.37%
case3 29.15% 34.41% 0.00% 77.17% 71.37% 43.35% 34.68%
case4 55.80% 41.91% 73.66% 0.00% 42.83% 61.49% 42.35%
case5 46.80% 29.56% 68.82% 4.72% 0.00% 48.33% 35.77%
case6 5.36% 0.29% 5.38% 25.20% 14.37% 0.00% 10.21%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.03%

300

Table A.11: Anomaly rates reported by the Markov Model detector with different
training combinations for restore

case1 case2 case3 case4 case5 attack
case1 0.00% 0.29% 0.00% 0.00% 3.77% 45.05%
case2 0.09% 0.00% 0.00% 0.00% 3.77% 44.26%
case3 0.00% 0.29% 0.00% 0.00% 3.77% 45.05%
case4 0.09% 0.00% 0.00% 0.00% 3.77% 44.26%
case5 22.25% 20.93% 22.25% 22.24% 0.00% 69.55%
all normal 0.00% 0.00% 0.00% 0.00% 0.00% 44.26%

301

Table A.12: Anomaly rates reported by the Markov Model detector with different training combinations for ftpd

case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 attack

case1 0.00% 0.00% 0.00% 0.18% 0.01% 0.00% 0.58% 0.05% 0.41% 0.05% 7.74%

case2 0.04% 0.00% 0.00% 0.13% 0.01% 0.00% 0.54% 0.00% 0.36% 0.00% 7.71%

case3 0.04% 0.00% 0.00% 0.13% 0.01% 0.00% 0.54% 0.00% 0.36% 0.00% 7.71%

case4 0.22% 0.01% 0.00% 0.00% 0.00% 0.00% 0.76% 0.00% 0.27% 0.00% 7.48%

case5 0.22% 0.01% 0.00% 0.00% 0.00% 0.00% 0.76% 0.00% 0.27% 0.00% 7.48%

case6 0.22% 0.01% 0.00% 0.00% 0.00% 0.00% 0.76% 0.00% 0.27% 0.00% 7.48%

case7 13.56% 47.51% 49.75% 14.17% 47.55% 49.76% 0.00% 8.92% 12.16% 8.92% 14.22%

case8 2.62% 46.76% 49.68% 2.75% 46.77% 49.68% 1.03% 0.00% 2.03% 0.00% 7.91%

case9 0.22% 0.01% 0.00% 0.09% 0.01% 0.00% 0.76% 0.00% 0.00% 0.00% 7.24%

case10 2.62% 46.76% 49.68% 2.75% 46.77% 49.68% 1.03% 0.00% 2.03% 0.00% 7.91%

all normal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.15%

302

A.5 Neural Network Training Set Analysis

Table A.13: Anomaly rates reported by the Neural Network detector with different
training combinations for traceroute

case1 case2 case3 case4 case5 attack

case1 0.01% 51.63% 65.26% 66.81% 51.68% 80.51%
case2 69.47% 0.01% 25.24% 38.22% 9.57% 23.99%
case3 70.86% 20.42% 0.02% 26.23% 21.90% 46.17%
case4 46.65% 7.61% 21.88% 0.01% 27.63% 28.61%
case5 100.00% 46.39% 35.71% 47.41% 0.03% 44.58%
all normal 1.87% 2.16% 2.29% 5.34% 2.89% 31.19%

Table A.14: Anomaly rates reported by the Neural Network detector with different
training combinations for samba

case1 case2 case3 case4 case5 case6 attack

case1 0.01% 25.46% 29.58% 57.53% 76.44% 13.56% 20.42%
case2 31.39% 0.01% 69.46% 71.34% 98.26% 46.98% 8.88%
case3 22.33% 40.64% 0.01% 28.73% 38.10% 27.37% 33.72%
case4 79.69% 94.59% 73.45% 0.01% 100.00% 80.84% 93.90%
case5 84.20% 93.88% 72.73% 75.26% 0.01% 69.84% 90.21%
case6 28.07% 45.88% 38.64% 54.93% 87.69% 0.02% 39.09%
all normal 4.00% 4.01% 4.25% 3.51% 2.38% 3.14% 5.73%

303

Table A.15: Anomaly rates reported by the Neural Network detector with different
training combinations for restore

case1 case2 case3 case4 case5 attack

case1 0.01% 6.66% 6.65% 6.53% 88.19% 100.00%
case2 2.84% 0.00% 5.62% 5.57% 47.99% 60.35%
case3 3.89% 7.63% 0.00% 0.07% 57.59% 62.53%
case4 4.84% 9.84% 0.09% 0.01% 76.06% 78.28%
case5 27.91% 26.45% 29.54% 29.52% 0.00% 15.50%
all normal 0.24% 0.40% 0.22% 0.22% 0.30% 14.00%

304

Table A.16: Anomaly rates reported by the Neural Network detector with different training combinations for ftpd

case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 attack

case1 0.01% 68.95% 73.51% 0.38% 68.94% 73.51% 5.95% 9.04% 1.06% 9.04% 24.00%

case2 81.75% 0.02% 5.80% 82.06% 0.04% 5.79% 83.55% 86.49% 82.04% 86.49% 66.51%

case3 74.30% 4.85% 0.01% 74.48% 4.87% 0.01% 72.96% 77.24% 74.52% 77.24% 62.52%

case4 0.30% 90.12% 95.80% 0.01% 90.10% 95.80% 5.12% 9.50% 1.10% 9.50% 25.68%

case5 39.22% 0.02% 2.68% 39.39% 0.01% 2.68% 40.75% 40.95% 39.28% 40.95% 34.55%

case6 76.92% 4.96% 0.02% 77.14% 4.98% 0.01% 79.32% 80.09% 76.95% 80.09% 65.92%

case7 4.93% 78.97% 84.02% 4.94% 78.95% 84.02% 0.01% 7.71% 4.72% 7.71% 21.90%

case8 5.85% 58.25% 61.60% 5.83% 58.24% 61.60% 9.50% 0.01% 5.18% 0.01% 20.55%

case9 0.91% 87.66% 93.11% 0.84% 87.64% 93.11% 5.16% 5.26% 0.01% 5.26% 17.39%

case10 9.88% 94.53% 100.00% 9.77% 94.51% 100.00% 12.63% 0.03% 8.62% 0.03% 36.02%

all normal 0.54% 0.54% 0.46% 0.61% 0.54% 0.46% 1.16% 0.54% 0.55% 0.54% 6.91%

Appendix B

Best Mimicry Attacks

B.1 Best Mimicry Attacks against Stide

open mmap fstat sendto gettimeofday select (2 x write) gettimeofday sendto gettimeofday

select (2 x write) gettimeofday sendto gettimeofday select (2 x write) gettimeofday

sendto gettimeofday select (2 x write) gettimeofday sendto gettimeofday select (2 x write)

gettimeofday close

Figure B.1: The best mimicry attack against Stide for traceroute

305

306

stat open (4 x llseek) read (2 x llseek) read (16 x llseek) read llseek read (2 x

llseek) read (10 x llseek) read llseek read (6 x llseek) read (17 x llseek) read llseek

read (9 x llseek) read (6 x llseek) read llseek read (7 x llseek) read (9 x llseek)

read (4 x llseek) read (4 x llseek) read (4 x llseek) read (22 x llseek) read (2 x

llseek) read (4 x llseek) read (8 x llseek) read (6 x llseek) read (2 x llseek) read

(7 x llseek) read llseek read (12 x llseek) read llseek read (4 x llseek) read (12 x

llseek) read (26 x llseek) read (2 x llseek) read (4 x llseek) read (6 x llseek) read (2

x llseek) read (7 x llseek) read (6 x llseek) read (12 x llseek) read (8 x llseek) read

(10 x llseek) read (5 x llseek) read (6 x llseek) read (6 x llseek) read (2 x llseek)

read (4 x llseek) read (6 x llseek) read (5 x llseek) read llseek read (2 x llseek)

read (17 x llseek) read (6 x llseek) read (6 x llseek) read (9 x llseek) read (19 x

llseek) read (5 x llseek) read (2 x llseek) read (4 x llseek) read (4 x llseek) read

(2 x llseek) read (7 x llseek) read (4 x llseek) read (4 x llseek) read (11 x llseek)

read (18 x llseek) read (6 x llseek) read (4 x llseek) read (6 x llseek) read (13 x

llseek) read (2 x llseek) read (7 x llseek) read (6 x llseek) read (8 x llseek) read

(6 x llseek) read llseek read (5 x llseek) read llseek read (2 x llseek) read (13 x

llseek) read (4 x llseek) read (5 x llseek) read (4 x llseek) read (13 x llseek) read

(2 x llseek) read (4 x llseek) read (6 x llseek) read (8 x llseek) read (2 x llseek)

read (7 x llseek) read llseek read (4 x llseek) read (5 x llseek) read llseek read

llseek read (2 x llseek) read (12 x llseek) read llseek read (20 x llseek) read (4 x

llseek) read (8 x llseek) read (15 x llseek) read (2 x llseek) read (5 x llseek) read

(8 x llseek) read (5 x llseek) read (6 x llseek) read (4 x llseek) read (5 x llseek)

read llseek read (4 x llseek) read llseek read (2 x llseek) read (7 x llseek) read (2 x

llseek) read (7 x llseek) read (6 x llseek) read (15 x llseek) read llseek read (11 x

llseek) read (6 x llseek) read (6 x llseek) read (14 x llseek) read (6 x llseek) read (5

x llseek) read (4 x llseek) read (2 x llseek) read (5 x llseek) read (4 x llseek) read

(2 x llseek) read (6 x llseek) read llseek read (4 x llseek) read (8 x llseek) read (10

x llseek) read (2 x llseek) read (5 x llseek) read (9 x llseek) read (8 x llseek) read

(4 x llseek) read (2 x llseek) read (8 x llseek) read (11 x llseek) write close

Figure B.2: The best mimicry attack against Stide for samba

307

(18 x write) read (7 x write) read (27 x write) read (5 x write) read (13 x write) read

(8 x write) read (5 x write) read (23 x write) read (11 x write) read (14 x write) read

(12 x write) read (19 x write) read (5 x write) read (30 x write) read (12 x write) read

(19 x write) read (5 x write) read (18 x write) read (8 x write) read (20 x write) read

(35 x write) read (12 x write) read (19 x write) read (5 x write) read (13 x write) read

(23 x write) read (7 x write) read (7 x write) read (27 x write) read (7 x write) read

(5 x write) read (21 x write) read (5 x write) read (31 x write) read (7 x write) read

(5 x write) read (14 x write) read (9 x write) read (5 x write) read (22 x write) read (8

x write) read (13 x write) read (14 x write) read (8 x write) read (11 x write) read (32

x write) read (8 x write) read (5 x write) read (18 x write) read (7 x write) read (23

x write) read (11 x write) read (23 x write) read (39 x write) read (21 x write) read (5

x write) read (21 x write) read (5 x write) read (31 x write) read (7 x write) read (5 x

write) read (17 x write) read (19 x write) read (19 x write) read (5 x write) open write

close

Figure B.3: The best mimicry attack against Stide for restore

connect getcwd fchdir close open fstat write close time open alarm

Figure B.4: The best mimicry attack against Stide for ftpd

308

B.2 Best Mimicry Attacks against pH

brk (3 x open) munmap mmap (2 x open) (2 x fstat) (3 x mmap) close munmap (3 x open) fstat

(3 x mmap) (2 x close) (2 x open) munmap (2 x close) open fstat (4 x mmap) close munmap

open fstat (4 x mmap) close munmap (3 x open) fstat (4 x mmap) close (2 x open) fstat (3 x

mmap) close munmap (3 x open) fstat (4 x mmap) close (3 x open) close open fstat (4 x mmap)

close munmap (3 x open) fstat (3 x mmap) close munmap open fstat (3 x mmap) close munmap (3

x open) fstat (4 x mmap) close (3 x open) mprotect mmap close open close write close

Figure B.5: The best mimicry attack against pH for traceroute

309

mmap2 (2 x fcntl64) open munmap fcntl64 write fcntl64 munmap (3 x fcntl64) munmap fcntl64

stat fcntl64 stat fcntl64 open (4 x fcntl64) stat (2 x fcntl64) stat (4 x fcntl64) munmap

fcntl64 time fcntl64 stat (7 x fcntl64) munmap (2 x fcntl64) stat (2 x fcntl64) munmap (4

x fcntl64) munmap (2 x fcntl64) munmap (2 x fcntl64) munmap (4 x fcntl64) stat munmap (2

x fcntl64) stat fcntl64 stat (4 x fcntl64) stat munmap (6 x fcntl64) (2 x munmap) fcntl64

munmap stat (3 x fcntl64) stat (2 x fcntl64) stat mmap2 (11 x fcntl64) stat munmap (2

x fcntl64) munmap (4 x fcntl64) munmap fcntl64 munmap (2 x fcntl64) (2 x munmap) (8 x

fcntl64) stat fcntl64 stat fcntl64 (2 x munmap) fcntl64 stat mmap2 (5 x fcntl64) munmap

fcntl64 munmap (2 x fcntl64) munmap (4 x fcntl64) munmap (5 x fcntl64) read stat (3 x

fcntl64) stat mmap2 (4 x fcntl64) stat (2 x fcntl64) munmap fcntl64 munmap (7 x fcntl64)

munmap (2 x fcntl64) munmap (2 x fcntl64) munmap fcntl64 stat munmap (2 x fcntl64) stat (5

x fcntl64) time (8 x fcntl64) (2 x munmap) fcntl64 munmap stat (3 x fcntl64) stat fcntl64

(2 x stat) mmap2 (6 x fcntl64) munmap fcntl64 stat (2 x fcntl64) stat munmap (2 x fcntl64)

munmap (4 x fcntl64) munmap fcntl64 munmap (3 x fcntl64) munmap (3 x fcntl64) munmap (3 x

fcntl64) (2 x stat) munmap (2 x fcntl64) (2 x munmap) (2 x fcntl64) munmap fcntl64 stat (3

x fcntl64) munmap stat (3 x fcntl64) munmap (4 x fcntl64) stat (8 x fcntl64) munmap (2 x

fcntl64) munmap (10 x fcntl64) stat (2 x fcntl64) munmap (2 x fcntl64) munmap fcntl64 stat

(3 x fcntl64) stat (3 x fcntl64) munmap (2 x fcntl64) (2 x munmap) (5 x fcntl64) munmap (4

x fcntl64) munmap (6 x fcntl64) munmap fcntl64 stat munmap stat (8 x fcntl64) stat fcntl64

(3 x stat) munmap (4 x fcntl64) munmap (5 x fcntl64) munmap fcntl64 stat munmap fcntl64

stat munmap (2 x fcntl64) stat fcntl64 (2 x stat) (4 x fcntl64) munmap (6 x fcntl64) (2

x munmap) fcntl64 munmap stat (3 x fcntl64) (2 x stat) fcntl64 stat mmap2 (12 x fcntl64)

munmap (2 x fcntl64) munmap (4 x fcntl64) munmap fcntl64 munmap (2 x fcntl64) (2 x munmap)

(8 x fcntl64) stat fcntl64 stat fcntl64 (2 x munmap) (4 x fcntl64) stat (2 x fcntl64) (2 x

munmap) stat (8 x fcntl64) stat mmap2 (7 x fcntl64) munmap (15 x fcntl64) stat (2 x munmap)

stat fcntl64 stat munmap (6 x fcntl64) stat (5 x fcntl64) munmap (2 x fcntl64)

Figure B.6: The best mimicry attack against pH for samba (first part)

310

munmap fcntl64 stat munmap (2 x fcntl64) stat fcntl64 stat (5 x fcntl64) munmap fcntl64

munmap (3 x fcntl64) (2 x munmap) (2 x fcntl64) munmap stat fcntl64 munmap fcntl64 stat

(2 x fcntl64) stat mmap2 (6 x fcntl64) munmap (2 x fcntl64) munmap (7 x fcntl64) stat

(2 x fcntl64) stat fcntl64 stat fcntl64 stat fcntl64 munmap fcntl64 stat fcntl64 stat

fcntl64 stat fcntl64 munmap (4 x fcntl64) (2 x munmap) (10 x fcntl64) munmap (3 x fcntl64)

munmap fcntl64 stat munmap fcntl64 stat fcntl64 stat (6 x fcntl64) stat fcntl64 stat (2 x

fcntl64) munmap fcntl64 munmap (4 x fcntl64) munmap (2 x fcntl64) munmap (4 x fcntl64) stat

munmap fcntl64 stat munmap (3 x fcntl64) (2 x stat) (5 x fcntl64) munmap (6 x fcntl64) (2

x munmap) fcntl64 munmap stat (3 x fcntl64) (2 x stat) fcntl64 stat mmap2 (12 x fcntl64)

(2 x munmap) stat fcntl64 munmap (3 x fcntl64) munmap fcntl64 munmap (2 x fcntl64) (2

x munmap) (8 x fcntl64) stat fcntl64 stat fcntl64 (3 x munmap) fcntl64 munmap fcntl64

stat (2 x fcntl64) (2 x munmap) stat (3 x fcntl64) munmap (4 x fcntl64) stat mmap2 (7 x

fcntl64) munmap (2 x fcntl64) munmap (12 x fcntl64) stat (2 x munmap) stat fcntl64 stat

munmap fcntl64 munmap (2 x fcntl64) stat fcntl64 munmap (3 x fcntl64) stat (2 x munmap)

(2 x fcntl64) munmap (2 x fcntl64) munmap (2 x fcntl64) stat (7 x fcntl64) munmap (2 x

fcntl64) munmap (2 x fcntl64) munmap (3 x fcntl64) munmap stat (6 x fcntl64) stat (11 x

fcntl64) munmap stat munmap (2 x fcntl64) munmap stat (3 x fcntl64) munmap fcntl64 stat (3

x fcntl64) munmap (8 x fcntl64) stat fcntl64 stat fcntl64 (2 x munmap) fcntl64 stat munmap

(4 x fcntl64) (2 x munmap) stat (2 x fcntl64) stat fcntl64 munmap fcntl64 (2 x munmap) stat

munmap fcntl64 stat (2 x fcntl64) (2 x munmap) stat (2 x fcntl64) stat fcntl64 munmap (2

x fcntl64) munmap (15 x fcntl64) munmap (2 x fcntl64) (2 x munmap) (6 x fcntl64) munmap

fcntl64 read stat (2 x fcntl64) (2 x munmap) (8 x fcntl64) stat open (3 x fcntl64) munmap

stat (3 x fcntl64) munmap (9 x fcntl64) (2 x stat) mmap2 (5 x fcntl64) (2 x time) fcntl64

time (6 x fcntl64) munmap (10 x fcntl64) stat (4 x fcntl64) munmap (2 x fcntl64) munmap (3

x fcntl64) stat fcntl64 stat fcntl64 close

Figure B.7: The best mimicry attack against pH for samba (second part)

311

(2 x fcntl) open write read lseek (13 x write) lseek (3 x write) lseek (3 x write) lseek

(4 x write) lseek (2 x write) (2 x lseek) (8 x write) lseek (5 x write) read write read (9

x write) lseek (16 x write) lseek (18 x write) lseek (6 x write) read (19 x write) lseek

(4 x write) lseek write read (7 x write) lseek (10 x write) (2 x read) (2 x write) lseek

(19 x write) lseek (7 x write) lseek (21 x write) read lseek (19 x write) lseek (5 x write)

lseek (18 x write) read (20 x write) lseek (3 x write) (2 x lseek) (12 x write) lseek (16

x write) read (11 x write) (2 x lseek) (3 x write) lseek (26 x write) lseek (2 x write)

read (7 x write) (2 x lseek) (15 x write) lseek (14 x write) lseek (8 x write) lseek (4 x

write) lseek (11 x write) lseek (4 x write) read (4 x write) read (7 x write) lseek (7 x

write) lseek (6 x write) read lseek (25 x write) lseek (8 x write) lseek (7 x write) read

(18 x write) lseek (13 x write) lseek (14 x write) lseek (15 x write) lseek (2 x write)

read lseek (13 x write) read (15 x write) lseek (7 x write) lseek (8 x write) lseek (18

x write) lseek (4 x write) lseek write read lseek (8 x write) read lseek (7 x write) read

(2 x lseek) (12 x write) read (7 x write) lseek (3 x write) lseek (3 x write) lseek (8 x

write) lseek (13 x write) read (4 x write) lseek (35 x write) lseek (7 x write) lseek (4 x

write) lseek (2 x write) (2 x lseek) (8 x write) lseek (7 x write) read lseek (2 x write)

lseek (9 x write) read (8 x write) lseek (7 x write) lseek (9 x write) lseek (11 x write)

read (22 x write) lseek (21 x write) (2 x lseek) (7 x write) lseek (37 x write) lseek (6 x

write) lseek (6 x write) lseek write lseek (15 x write) lseek (9 x write) lseek (3 x write)

lseek (16 x write) read (3 x write) close

Figure B.8: The best mimicry attack against pH for restore

open close read write (23 x close) read (6 x close) read (21 x close) time (2 x open) read

write (46 x close) read (11 x close) read (3 x close) time (2 x open) (2 x read) (11 x

close) time (2 x open) read write (23 x close) read (11 x close) read (3 x close) time (2 x

open) (2 x read) (4 x close) time (2 x open) read write (22 x close) read (14 x close) open

(2 x read) (66 x close) read (3 x close) (2 x read) (88 x close) time (2 x open) read write

(78 x close) time (2 x open) read write (58 x close) read (3 x close) time (2 x open) (2 x

read) (4 x close) time (2 x open) read write (45 x close) time (2 x open) read write (21 x

close) read (157 x close) read (21 x close) time (2 x open) read write (9 x close) read (36

x close) read (11 x close) read (3 x close) time (2 x open) (2 x read) (4 x close) time (2

x open) read write close read write (17 x close) read (34 x close) read (45 x close) time

(2 x open) read write close

Figure B.9: The best mimicry attack against pH for ftpd

312

B.3 Best Mimicry Attacks against pH with a Schema Mask

gettimeofday (2 x open) write fstat gettimeofday (2 x mmap) open read open close (6 x open)

mmap open close (2 x open) mmap open mmap (5 x open) mmap open (2 x mmap) (6 x open) mmap

(7 x open) mmap (10 x open) mmap (13 x open) mmap (5 x open) mmap (4 x open) mmap open

mmap (5 x open) mmap (25 x open) mmap (4 x open) mmap (4 x open) (4 x mmap) (5 x open) (2

x mmap) (4 x open) mmap (6 x open) mmap (6 x open) (2 x mmap) (6 x open) (2 x mmap) close

mmap (2 x open) mmap (9 x open) mmap open (2 x mmap) (6 x open) mmap (18 x open) mmap (24

x open) mmap open mmap (22 x open) mmap open mmap (4 x open) mmap open mmap (4 x open)

mmap (4 x open) mmap open mmap (4 x open) mmap open close mmap (2 x open) mmap (10 x open)

mmap (6 x open) mmap (11 x open) mmap (2 x open) mmap (9 x open) mmap open mmap (4 x open)

mmap open close mmap (2 x open) mmap (8 x open) mmap open mmap (18 x open) (4 x mmap) (13

x open) mmap open (2 x mmap) (5 x open) mmap open close (2 x open) (2 x mmap) (13 x open)

mmap (6 x open) (2 x mmap) (6 x open) mmap open close mmap (22 x open) mmap (18 x open) (2

x mmap) open mmap (2 x open) mmap (5 x open) (3 x mmap) (6 x open) mmap open close mmap (12

x open) mmap open (2 x mmap) (6 x open) mmap (7 x open) mmap (10 x open) mmap (13 x open)

mmap (10 x open) mmap open mmap (9 x open) mmap (10 x open) mmap open mmap (6 x open) mmap

open mmap (4 x open) mmap (5 x open) (3 x mmap) (13 x open) mmap open (2 x mmap) (7 x open)

mmap (13 x open) mmap (4 x open) mmap open mmap open close (2 x open) (2 x mmap) close mmap

(2 x open) mmap open mmap (11 x open) mmap (9 x open) mmap open mmap (5 x open) mmap (4 x

open) mmap (11 x open) mmap open mmap (4 x open) mmap open close mmap (2 x open) mmap (8 x

open) mmap (7 x open) mmap open mmap (4 x open) mmap open close (3 x open) mmap (6 x open)

mmap (5 x open) mmap (8 x open) mmap (28 x open) mmap (27 x open) mmap (8 x open) mmap open

mmap (6 x open) mmap (8 x open) mmap (5 x open) mmap open mmap (4 x open) mmap open close

(8 x open) (2 x mmap) open mmap (4 x open) mmap open close mmap (11 x open) mmap open mmap

(18 x open) (2 x mmap) open mmap (4 x open) mmap (2 x open) mmap (5 x open) mmap (15 x

open) mmap (18 x open) mmap munmap

Figure B.10: The best mimicry attack against pHsm for traceroute

313

open stat llseek fcntl64 stat write fcntl64 munmap open close stat close fcntl64 read (3

x stat) read stat (4 x read) close mmap2 (2 x open) read (3 x stat) close read (3 x stat)

fcntl64 (3 x stat) close read fcntl64 read stat read fcntl64 stat close (2 x read) mmap2

(4 x fcntl64) getegid32 stat llseek read close (2 x read) open (2 x fcntl64) read stat (2

x close) stat read close read close fcntl64 stat mmap2 fcntl64 stat munmap fcntl64 (2 x

stat) close stat close (2 x read) stat read stat (2 x read) stat open fcntl64 stat close

stat fcntl64 read open read close mmap2 close open read (2 x stat) open (4 x fcntl64) (2 x

stat) open stat close mmap2 stat open read stat (2 x fcntl64) close munmap read (3 x stat)

(2 x fcntl64) read geteuid32 munmap llseek read (2 x mmap2) read open read stat read stat

close mmap2 (2 x read) open geteuid32 close fcntl64 (3 x read) fcntl64 stat (3 x fcntl64)

geteuid32 stat llseek open close (2 x read) stat (2 x read) (2 x stat) fcntl64 read fcntl64

open read (2 x stat) fcntl64 (2 x stat) read (4 x stat) read close (2 x read) mmap2 read

fcntl64 open read stat munmap (2 x read) mmap2 read (3 x fcntl64) mmap2 stat close read

close mmap2 read open read stat read stat read munmap (2 x stat) mmap2 stat open munmap

read fcntl64 (2 x read) fcntl64 open read stat munmap (2 x read) open read (3 x fcntl64)

mmap2 stat close (3 x stat) close open read stat read fcntl64 stat munmap close stat

mmap2 stat close (2 x stat) mmap2 stat (3 x read) (3 x stat) munmap read (2 x stat) close

open (2 x read) mmap2 read close stat close read stat read mmap2 stat read fcntl64 close

munmap read stat open munmap (2 x fcntl64) stat llseek read close (2 x mmap2) close (2 x

read) stat read munmap (2 x read) fcntl64 stat close stat fcntl64 (2 x read) (2 x stat)

open close open read (4 x stat) (3 x fcntl64) stat fcntl64 read open read (3 x fcntl64)

geteuid32 read fcntl64 stat open read open close mmap2 close read open fcntl64 open (2

x stat) close read stat open stat (8 x fcntl64) getegid32 (2 x stat) fcntl64 mmap2 (2 x

read) open (2 x read) fcntl64 close (2 x stat) close mmap2 read fcntl64 stat (2 x read)

close fcntl64 stat read mmap2 read open read open read geteuid32 close open stat (3 x read)

fcntl64 read stat close munmap read (2 x stat) (2 x close) (2 x fcntl64) mmap2 stat read

(2 x stat) mmap2 read close read stat read stat read (4 x fcntl64) (3 x stat) close mmap2

(4 x read) stat mmap2 read open (3 x stat) fcntl64 read munmap (2 x read) stat read (2 x

fcntl64) mmap2 geteuid32 stat mmap2 (2 x open) fcntl64 (3 x stat) read stat (2 x read) open

read fcntl64 read stat close (2 x stat) read fcntl64 read munmap read (2 x stat) fcntl64

close (4 x stat) mmap2 fcntl64 close read open (2 x read)

Figure B.11: The best mimicry attack against pHsm for samba (first part)

314

mmap2 close open read (3 x stat) read (3 x fcntl64) (4 x stat) read mmap2 stat close stat

close mmap2 read open read (3 x stat) close (3 x read) mmap2 (4 x stat) mmap2 stat (2 x

read) (3 x stat) (2 x close) (4 x read) fcntl64 stat munmap (3 x stat) close stat (3 x

read) stat read (2 x stat) (2 x read) stat close (3 x stat) read fcntl64 mmap2 stat read

stat close mmap2 read open read open read stat close open read stat mmap2 stat open stat

close mmap2 stat (2 x read) stat fcntl64 stat close munmap read (2 x stat) close (2 x stat)

mmap2 (2 x open) read stat read fcntl64 read stat close munmap fcntl64 stat open mmap2

close (2 x fcntl64) geteuid32 (3 x stat) close mmap2 read open fcntl64 stat munmap stat

(4 x fcntl64) getegid32 (2 x stat) read mmap2 stat open read (5 x stat) (4 x read) close

mmap2 (2 x open) read fcntl64 read (4 x close) stat open stat close fcntl64 read stat (2

x read) (2 x fcntl64) read stat close (2 x stat) read fcntl64 munmap open read stat (2 x

fcntl64) close stat mmap2 stat open close fcntl64 close read open read close mmap2 close

open fcntl64 (2 x stat) (5 x fcntl64) (3 x stat) (2 x read) close stat close fcntl64 close

mmap2 read open read stat read stat close munmap (2 x stat) mmap2 stat close stat close

mmap2 stat (2 x read) (4 x stat) fcntl64 read open (2 x read) fcntl64 close read (3 x stat)

close stat (3 x read) (3 x stat) fcntl64 read munmap fcntl64 close (2 x stat) munmap read

fcntl64 mmap2 stat close stat close stat read open (3 x read) stat close munmap read stat

mmap2 open (3 x stat) mmap2 stat (2 x read) close fcntl64 stat close stat mmap2 close read

close (3 x stat) open (2 x read) fcntl64 read fcntl64 read stat close munmap fcntl64 stat

munmap mmap2 close mmap2 fcntl64 geteuid32 (2 x stat) fcntl64 stat mmap2 read open read (2

x stat) (5 x fcntl64) getegid32 (3 x stat) mmap2 stat open read stat close stat close stat

(3 x read) (2 x stat) close open read (2 x stat) fcntl64 (2 x stat) (2 x fcntl64) close

stat fcntl64 stat close fcntl64 open read close (2 x stat) mmap2 (2 x open) read fcntl64

read close stat mmap2 fcntl64 (3 x stat) open read close (2 x fcntl64) (2 x read) close

fcntl64 stat close mmap2 open read stat close stat (2 x read) fcntl64 stat close stat close

open read (3 x stat) munmap fcntl64 read mmap2 (4 x stat) mmap2 read open (3 x read) (2 x

stat) munmap read stat mmap2 stat fcntl64 stat close mmap2 stat (2 x read) (3 x stat) close

llseek read getegid32 close munmap (2 x read) fcntl64 read (3 x fcntl64) (2 x stat) fcntl64

stat close mmap2 stat open read munmap fcntl64 mmap2 close (2 x read)

Figure B.12: The best mimicry attack against pHsm for samba (second part)

315

(4 x write) read write read (4 x write) read (2 x write) read (2 x write) (2 x read) write

read lseek (2 x write) lseek (3 x write) (2 x read) write read write (2 x read) write read

write read (6 x write) read (3 x write) read (2 x write) (2 x read) write (4 x read) (7 x

write) read write (2 x read) (8 x write) read (4 x write) lseek write read (3 x write) (2 x

read) write read lseek (4 x write) (2 x read) (3 x write) lseek write read (4 x write) read

write read (3 x write) read write read lseek (3 x write) lseek (2 x write) (3 x read) (2 x

write) (2 x read) (3 x write) read (3 x write) read write read mmap (7 x write) lseek write

read (2 x write) read (7 x write) lseek read (4 x write) read lseek (5 x write) read lseek

write (3 x read) (3 x write) lseek (2 x read) (2 x write) lseek write read (4 x write) (2 x

read) (2 x write) read (3 x write) (2 x read) (2 x write) (2 x read) (3 x write) (2 x read)

(2 x write) lseek write read write lseek write read (4 x write) (2 x read) (5 x write) read

(4 x write) read (4 x write) read (3 x write) (2 x read) write (2 x read) (5 x write) read

write read write read (7 x write) read lseek read (3 x write) read write (4 x read) (2 x

write) lseek read write read (3 x write) read lseek (7 x write) lseek write read write read

(3 x write) read (9 x write) read (8 x write) read (3 x write) read write (3 x read) write

read (3 x write) read lseek (2 x write) (2 x read) (2 x write) (3 x read) (2 x write) (3 x

read) mmap open write read (2 x write) read (9 x write) read (3 x write) lseek write read

write lseek write read (5 x write) (3 x read) (3 x write) read (6 x write) read (2 x write)

(3 x read) (5 x write) read (3 x write) read (10 x write) (2 x read) write lseek write

lseek (2 x read) (2 x write) lseek (2 x read) write lseek read (2 x write) lseek read (7

x write) lseek (2 x write) read (3 x write) read lseek (3 x read) (2 x write) lseek (7 x

read) (8 x write) read write (2 x read) write lseek (2 x read) write read (6 x write) read

write (2 x read)

Figure B.13: The best mimicry attack against pHsm for restore (first part)

316

lseek read (2 x write) read (6 x write) (2 x read) write read (2 x write) read (5 x write)

lseek write read (2 x write) (3 x read) (2 x lseek) write read write (4 x read) (2 x lseek)

read lseek write read (5 x write) lseek (2 x write) (2 x read) write read (8 x write) read

(3 x write) read (2 x write) (2 x read) (5 x write) read write read (5 x write) read write

read (2 x write) read write read (2 x write) lseek write read (5 x write) (2 x read) (2 x

write) read (2 x write) read write read lseek write (2 x read) lseek (2 x read) write read

(3 x write) (2 x read) lseek write read (2 x write) read write (2 x read) (4 x write) lseek

(2 x write) read (2 x write) read write read (13 x write) read (2 x write) read (4 x write)

read write read write read write read (10 x write) read (2 x write) lseek (4 x write) lseek

write (2 x read) (2 x write) read (2 x write) read (2 x write) read (3 x write) read (3 x

write) (2 x read) write read (6 x write) (4 x read) (2 x write) read (3 x write) (2 x read)

write (2 x read) lseek (2 x read) (2 x write) read lseek read mmap write (4 x read) (8 x

write) read (2 x write) read (4 x write) read write (3 x read) write (3 x read) (3 x write)

(6 x read) (4 x write) (2 x read) write (2 x read) write read write read (5 x write) (2 x

read) (2 x write) (2 x read) (3 x write) read write (2 x read) (2 x write) read write lseek

(3 x write) (5 x read) (2 x write) read (3 x write) read write (3 x read) (2 x write) (3 x

read) (5 x write) (2 x read) (5 x write) lseek read write read (2 x write) read (3 x write)

read (5 x write) (3 x read) (5 x write) read (5 x write) read (2 x write) (3 x read) write

lseek read write lseek (2 x read) (5 x write) read lseek (8 x write) read write (2 x read)

(3 x write) (2 x read) (5 x write) lseek read write read (3 x write) read (2 x write) lseek

read write read lseek (7 x write) read (3 x write) read (2 x write) read (5 x write) (2 x

read) write (2 x read) write (2 x read) write read (3 x write) (2 x read) write read close

read lseek open

Figure B.14: The best mimicry attack against pHsm for restore (second part)

317

chdir open rt sigaction (3 x open) read time open (2 x read) close (2 x read) (2 x fstat)

open read close open read close open read close rt sigaction open read close read open

(2 x read) open time write (2 x read) close fstat close open close open (2 x read)

rt sigaction (2 x munmap) close (2 x open) (2 x rt sigaction) (2 x read) time open time

fstat rt sigaction time close open read open fstat read rt sigaction (3 x close) read time

(3 x close) read time rt sigaction time read time (2 x open) rt sigaction close read time

close (2 x read) time fstat open close (2 x read) fstat time read time (2 x open) close

open read close read time read (3 x close) fstat read (2 x time) close (5 x open) close

open mmap open fstat open mmap open fstat close fstat time close read close open read

fstat (3 x open) rt sigaction (2 x open) time rt sigaction munmap (2 x close) (2 x open)

rt sigaction (2 x read) time close fstat close mmap rt sigaction read close time close (2

x read) (2 x open) (2 x close) read close (3 x read) munmap time close time rt sigaction

open read time (2 x close) open close open read (5 x open) fstat close fstat time (2 x

close) rt sigaction read munmap time read fstat read (2 x time) (2 x read) time (3 x close)

fstat (2 x open) time open close (2 x read) close open close (2 x read) close read open

mmap (3 x open) read close open read (3 x open) mmap open fstat mmap fstat read close

(4 x read) (2 x open) (2 x close) read open (3 x read) munmap time close fstat read open

read time (2 x close) open close open read open close open close open fstat close fstat

(3 x close) read rt sigaction (2 x close) mmap (2 x open) read (2 x close) time (2 x read)

rt sigaction time close mmap (3 x open) (3 x read) time close (2 x read) time (2 x open)

time close open read close rt sigaction fstat read fstat read (2 x open) mmap open read

close rt sigaction munmap (3 x close) open time (3 x close) read time rt sigaction time

close time (2 x open) rt sigaction open read time close (2 x read) time fstat (2 x open)

close (2 x read) rt sigaction time close mmap (2 x open) (4 x read) time close (2 x read)

time (3 x open) close open read close rt sigaction fstat read fstat read (4 x open) read

close rt sigaction munmap (2 x close) open (2 x close) rt sigaction read open fstat read (2

x open) close open close open (2 x read) open time close open read (3 x open) mmap close (3

x fstat) time mmap (2 x open) (4 x close) open (2 x time) fstat (2 x open) close (3 x read)

(2 x open) read (3 x close) open (2 x time) read close read time (2 x read) time fstat (2 x

open) close open (2 x read) rt sigaction read open rt sigaction read close (3 x read) open

time fstat read time open time fstat open time close open read time

Figure B.15: The best mimicry attack against pHsm for ftpd (first part)

318

(2 x open) close open read close read time read (4 x close) read time (2 x close) open

close (2 x open) (2 x close) open mmap open fstat close fstat time (2 x close) rt sigaction

read munmap time fstat (2 x read) (2 x time) read rt sigaction time close fstat time fstat

open fstat rt sigaction read close (2 x read) open (2 x time) fstat (2 x open) close open

(2 x read) (2 x open) (3 x close) read open (2 x time) read close (2 x time) (2 x read)

open read mmap rt sigaction fstat close (4 x read) (2 x time) close time close open read

fstat (2 x open) close open read rt sigaction read munmap close (2 x read) open (2 x time)

fstat (2 x open) close read open read fstat open (4 x close) open close time read close (2

x time) (2 x read) open read mmap rt sigaction fstat close read open close open mmap open

fstat close fstat time (2 x close) rt sigaction read munmap time (2 x fstat) read (2 x time)

read rt sigaction time close time close fstat (2 x open) time read close (2 x read) close

open close (2 x read) close (2 x open) mmap (4 x open) close open read (3 x open) mmap

open fstat open fstat time close open rt sigaction read munmap (2 x read) mmap read (3 x

close) fstat read time (2 x close) open close read (2 x open) (2 x close) read close open

read time fstat (2 x open) close open (2 x read) close (2 x read) time fstat (2 x open)

read open read close rt sigaction munmap close rt sigaction (2 x read) write read open (2 x

read) open time write (2 x read) open fstat (2 x open) close open (2 x read) rt sigaction

munmap (2 x close) (2 x open) time rt sigaction (2 x read) time open time fstat rt sigaction

time close open read open fstat read rt sigaction (3 x close) read time (3 x close) read

time rt sigaction open close time (2 x open) rt sigaction (2 x read) time close (2 x read)

open fstat open rt sigaction (2 x read) fstat time read time (2 x open) close open read

close read time read close open time fstat read time (4 x close) (3 x open) close open

mmap open fstat open mmap open fstat close fstat time close read close open read fstat (3 x

open) rt sigaction open read time rt sigaction munmap open close time open rt sigaction read

rt sigaction time close fstat close mmap rt sigaction read close (5 x read) open (3 x close)

open (3 x read) munmap time close fstat rt sigaction open read time (2 x close) open close

open read open close open mmap time fstat close fstat (2 x close) (2 x read) rt sigaction (2

x close) mmap (2 x open) close (3 x read) time close (2 x read) time fstat (2 x open) close

read fstat open (2 x close) open (3 x read) munmap fstat close open read open rt sigaction

(2 x open) close read close read (2 x open) (3 x close) (2 x open) read open close read

rt sigaction (3 x close) read open close open rt sigaction (2 x open) write close

Figure B.16: The best mimicry attack against pHsm for ftpd (second part)

319

B.4 Best Mimicry Attacks against the Markov Model

brk (2 x mmap) close (2 x write) gettimeofday (6 x write) munmap open fstat mmap close (3 x write)

gettimeofday write gettimeofday (3 x write) gettimeofday (9 x write) gettimeofday (2 x write)

gettimeofday write gettimeofday (4 x write) gettimeofday write gettimeofday write gettimeofday (3

x write) munmap brk (8 x write) gettimeofday write gettimeofday select write gettimeofday (3 x write)

munmap write munmap (3 x write) gettimeofday write gettimeofday select (2 x write) gettimeofday write

gettimeofday (6 x write) gettimeofday (5 x write) gettimeofday write munmap (5 x write) gettimeofday

write gettimeofday write munmap write gettimeofday write gettimeofday (3 x write) gettimeofday (7

x write) gettimeofday select (4 x write) gettimeofday (4 x write) munmap open fstat mmap close (6 x

write) gettimeofday (3 x write) munmap (2 x brk) (2 x write) gettimeofday (5 x write) gettimeofday (6

x write) munmap (3 x write) munmap open fstat mmap close (3 x write) gettimeofday write gettimeofday

write gettimeofday (3 x write) gettimeofday (4 x write) gettimeofday (4 x write) gettimeofday (2

x write) gettimeofday (6 x write) gettimeofday write gettimeofday write gettimeofday (3 x write)

munmap brk (8 x write) gettimeofday write gettimeofday select write gettimeofday (3 x write) munmap

write munmap (9 x write) gettimeofday (4 x write) gettimeofday (2 x write) gettimeofday (6 x write)

gettimeofday write gettimeofday write gettimeofday (3 x write) munmap brk (8 x write) gettimeofday

write gettimeofday select write gettimeofday (3 x write) munmap write munmap (5 x write) gettimeofday

select (2 x write) gettimeofday write gettimeofday write munmap write gettimeofday write gettimeofday

(3 x write) gettimeofday (3 x write) munmap write fstat (2 x mmap) close (3 x write) gettimeofday

write gettimeofday select (3 x write) munmap (8 x write) gettimeofday write gettimeofday (3 x write)

munmap (3 x write) gettimeofday write gettimeofday select (2 x write) gettimeofday write gettimeofday

(12 x write) gettimeofday write munmap (3 x write) gettimeofday write gettimeofday (3 x write)

munmap (3 x write) gettimeofday write gettimeofday (3 x write) gettimeofday (9 x write) munmap

open fstat mmap close munmap (2 x write) gettimeofday (5 x write) gettimeofday write gettimeofday

write gettimeofday (3 x write) munmap brk (8 x write) gettimeofday write gettimeofday select write

gettimeofday (3 x write) munmap write munmap (3 x write) gettimeofday write gettimeofday select (2 x

write) gettimeofday write gettimeofday (6 x write) gettimeofday (5 x write)

Figure B.17: The best mimicry attack against the Markov Model for traceroute (first
part)

320

gettimeofday write munmap (5 x write) gettimeofday write gettimeofday (3 x write) gettimeofday write

gettimeofday (3 x write) gettimeofday (7 x write) gettimeofday select (2 x write) gettimeofday write

gettimeofday (4 x write) munmap write fstat mmap close (3 x write) gettimeofday (6 x write) munmap brk

gettimeofday (7 x write) gettimeofday (3 x write) gettimeofday write gettimeofday (3 x write) munmap

(3 x write) gettimeofday write gettimeofday select (2 x write) gettimeofday write gettimeofday (6 x

write) gettimeofday (5 x write) gettimeofday write munmap (3 x write) gettimeofday (5 x write) munmap

write gettimeofday write gettimeofday (3 x write) gettimeofday (7 x write) gettimeofday select (2 x

write) gettimeofday write gettimeofday (16 x write) gettimeofday write munmap (3 x write) gettimeofday

write gettimeofday (3 x write) munmap (3 x write) gettimeofday (3 x write) gettimeofday (2 x write)

gettimeofday (4 x write) gettimeofday select (2 x write) gettimeofday write gettimeofday (5 x write)

munmap open fstat mmap close (3 x write) gettimeofday write gettimeofday write gettimeofday (2

x write) gettimeofday (3 x write) munmap brk (3 x write) gettimeofday (5 x write) gettimeofday

(3 x write) gettimeofday (2 x write) munmap (3 x write) munmap open fstat mmap close (3 x write)

gettimeofday write gettimeofday (3 x write) gettimeofday (2 x write) gettimeofday (2 x write) munmap

(3 x write) munmap open fstat mmap close munmap (2 x write) gettimeofday write gettimeofday (3 x

write) gettimeofday (4 x write) gettimeofday (11 x write) gettimeofday (3 x write) gettimeofday

write gettimeofday (3 x write) munmap (3 x write) gettimeofday write gettimeofday select (2 x write)

gettimeofday write gettimeofday (6 x write) gettimeofday (5 x write) gettimeofday write munmap

write gettimeofday select (9 x write) munmap write fstat (2 x mmap) close (3 x write) gettimeofday

write gettimeofday select (3 x write) munmap (8 x write) gettimeofday write gettimeofday (3 x write)

munmap (3 x write) gettimeofday write gettimeofday select (2 x write) gettimeofday write gettimeofday

(7 x write) munmap open fstat mmap close (3 x write) gettimeofday write gettimeofday (3 x write)

gettimeofday (2 x write) gettimeofday (2 x write) munmap (3 x write) munmap open fstat mmap close

munmap (2 x write) gettimeofday write gettimeofday (3 x write) gettimeofday (4 x write) gettimeofday

(6 x write) gettimeofday (7 x write) gettimeofday (3 x write) gettimeofday (2 x write) munmap (3 x

write) munmap open fstat mmap close (6 x write) gettimeofday (3 x write) munmap brk write fstat (2 x

mmap) close write

Figure B.18: The best mimicry attack against the Markov Model for traceroute (sec-
ond part)

321

fcntl64 stat munmap llseek munmap (2 x stat) geteuid32 stat llseek munmap time (2 x fcntl64) read

stat fcntl64 munmap stat (2 x fcntl64) (2 x stat) time munmap (4 x stat) llseek munmap stat (3 x

munmap) (2 x time) fcntl64 close munmap (3 x stat) fcntl64 stat geteuid32 stat munmap llseek munmap

fcntl64 stat geteuid32 (2 x stat) munmap time munmap fcntl64 munmap (2 x stat) geteuid32 stat munmap

llseek munmap (2 x stat) time stat llseek munmap time mmap2 (2 x fcntl64) (2 x stat) fcntl64 munmap

(2 x fcntl64) (2 x stat) fcntl64 (2 x stat) munmap time stat fcntl64 munmap fcntl64 stat munmap stat

geteuid32 stat (2 x munmap) time fcntl64 read stat (2 x munmap) (2 x stat) fcntl64 stat munmap time

munmap (2 x stat) geteuid32 stat llseek munmap (3 x stat) munmap llseek munmap (2 x stat) munmap

time fcntl64 stat open fcntl64 open stat fcntl64 (2 x stat) geteuid32 stat llseek munmap time fcntl64

(2 x munmap) llseek munmap fcntl64 read (2 x stat) mmap2 llseek read stat munmap (2 x stat) mmap2

time munmap close stat fcntl64 munmap (2 x fcntl64) (2 x stat) munmap time fcntl64 munmap time stat

(2 x fcntl64) munmap (2 x stat) fcntl64 geteuid32 (2 x stat) (2 x munmap) (3 x stat) geteuid32 stat

llseek munmap time fcntl64 read stat munmap fcntl64 stat munmap fcntl64 stat munmap time munmap stat

(2 x geteuid32) stat fcntl64 munmap (2 x stat) fcntl64 (2 x munmap) (3 x stat) geteuid32 (2 x stat)

munmap open fcntl64 (2 x stat) (2 x fcntl64) stat time llseek munmap (2 x stat) fcntl64 munmap stat

llseek write (3 x stat) mmap2 time read close select munmap write close stat llseek munmap time (2

x fcntl64) (2 x munmap) stat geteuid32 stat munmap llseek munmap stat time geteuid32 stat fcntl64

munmap time mmap2 (2 x fcntl64) close stat fcntl64 munmap (2 x fcntl64) (3 x stat) time fcntl64 stat

fcntl64 time (2 x stat) llseek munmap time munmap (2 x stat) geteuid32 stat llseek munmap time (2

x fcntl64) read stat fcntl64 munmap stat (2 x fcntl64) (2 x stat) time munmap (2 x stat) geteuid32

stat llseek (5 x munmap) time stat fcntl64 close (2 x munmap) (2 x stat) munmap stat geteuid32 stat

munmap llseek munmap (2 x stat) geteuid32 (2 x stat) munmap time munmap fcntl64 munmap (2 x stat)

geteuid32 time munmap stat munmap (2 x stat) time stat llseek munmap (2 x time) fcntl64 (3 x stat)

fcntl64 munmap (2 x fcntl64) stat mmap2 fcntl64 (2 x stat) munmap time stat fcntl64 munmap fcntl64

stat munmap (2 x geteuid32) stat (2 x munmap) time fcntl64 read stat munmap fcntl64 stat (2 x fcntl64)

stat munmap time munmap (2 x stat) geteuid32 time llseek munmap (3 x stat) munmap llseek munmap (2 x

stat) munmap time fcntl64 stat open fcntl64 open fcntl64 munmap (2 x

Figure B.19: The best mimicry attack against the Markov Model for samba (first
part)

322

stat) geteuid32 stat llseek munmap time (2 x fcntl64) munmap fcntl64 munmap fcntl64 read stat time

mmap2 read stat (2 x fcntl64) stat munmap fcntl64 stat munmap time (3 x munmap) geteuid32 stat llseek

munmap (3 x stat) munmap llseek munmap (3 x stat) fcntl64 geteuid32 stat munmap time (2 x stat)

(2 x munmap) (3 x stat) geteuid32 (2 x stat) time stat llseek munmap (2 x time) munmap (3 x stat)

fcntl64 munmap (2 x fcntl64) (2 x stat) fcntl64 (2 x stat) munmap time stat fcntl64 munmap fcntl64 (2

x stat) (2 x geteuid32) stat (2 x munmap) time fcntl64 read stat munmap fcntl64 stat (2 x fcntl64)

stat munmap time munmap (2 x stat) geteuid32 time llseek munmap (3 x stat) mmap2 time read close

select munmap write close stat llseek munmap time (2 x fcntl64) (2 x munmap) stat geteuid32 stat

munmap llseek munmap (2 x stat) geteuid32 stat fcntl64 munmap time mmap2 (2 x fcntl64) close stat

fcntl64 munmap (2 x fcntl64) (3 x stat) time fcntl64 stat fcntl64 time (2 x stat) llseek munmap time

munmap (2 x stat) geteuid32 stat (2 x munmap) time (2 x fcntl64) read stat fcntl64 munmap stat (2 x

fcntl64) (2 x stat) time munmap (2 x stat) geteuid32 stat llseek munmap fcntl64 (3 x munmap) time

stat fcntl64 close (2 x munmap) (2 x stat) munmap stat geteuid32 stat munmap llseek munmap (2 x stat)

geteuid32 (2 x stat) munmap time munmap fcntl64 munmap (2 x stat) geteuid32 time munmap stat munmap

(2 x stat) time stat llseek munmap (2 x time) fcntl64 (3 x stat) fcntl64 munmap (2 x fcntl64) (2 x

stat) fcntl64 (2 x stat) munmap time stat fcntl64 munmap fcntl64 stat munmap (2 x geteuid32) time (2

x munmap) time fcntl64 read (2 x stat) fcntl64 stat (2 x fcntl64) stat munmap time munmap (2 x stat)

geteuid32 time llseek munmap (3 x stat) munmap llseek munmap (2 x stat) munmap time fcntl64 stat

open fcntl64 open fcntl64 munmap (2 x stat) geteuid32 stat llseek munmap time (2 x fcntl64) munmap

fcntl64 munmap fcntl64 read stat time mmap2 read stat (2 x fcntl64) stat munmap fcntl64 stat munmap

time (3 x munmap) geteuid32 stat llseek munmap (3 x stat) munmap llseek munmap (3 x stat) fcntl64

geteuid32 stat munmap time (2 x stat) (2 x munmap) (3 x stat) geteuid32 (2 x stat) time stat llseek

munmap (2 x time) munmap (3 x stat) fcntl64 munmap (2 x fcntl64) (2 x stat) fcntl64 (2 x stat) munmap

time stat fcntl64 munmap fcntl64 (2 x stat) (2 x geteuid32) stat (2 x munmap) time fcntl64 read stat

munmap fcntl64 stat (2 x fcntl64) stat munmap time munmap (2 x stat) geteuid32 time llseek munmap (4

x stat) llseek munmap (2 x stat) munmap time (2 x fcntl64) open fcntl64 open stat munmap (2 x stat)

geteuid32 stat llseek munmap time (2 x fcntl64) munmap fcntl64 munmap fcntl64 read stat time mmap2

read stat munmap (2 x stat) munmap fcntl64 stat munmap time (3 x munmap) geteuid32 stat llseek munmap

(3 x stat) munmap llseek munmap stat (2 x munmap) stat geteuid32 stat fcntl64 stat (3 x munmap)

time stat fcntl64 munmap (4 x stat) llseek munmap time mmap2 (2 x fcntl64) close stat fcntl64 munmap

fcntl64 (2 x stat) fcntl64 (2 x stat) llseek munmap time mmap2 (2 x fcntl64) stat llseek munmap time

fcntl64 read stat munmap fcntl64 stat fcntl64 (2 x stat) llseek munmap time (2 x fcntl64) munmap stat

munmap geteuid32 stat munmap llseek munmap (4 x stat) llseek munmap time (2 x fcntl64) munmap (2 x

stat) geteuid32 stat munmap stat (2 x munmap) time stat munmap write close select

Figure B.20: The best mimicry attack against the Markov Model for samba (second
part)

323

lseek (2 x read) (3 x write) lseek read lseek (2 x open) (3 x write) (2 x lseek) open (2

x write) read open read open read open write lseek (3 x read) lseek fstat mmap read (2 x

lseek) open write (2 x read) open (2 x read) lseek open read lseek write read (2 x write)

lseek read (3 x write) read (3 x lseek) open write (2 x read) write lseek read (2 x write)

lseek (2 x write) (2 x read) (3 x lseek) fstat mmap read open write read write lseek (2 x

open) (2 x read) lseek read (3 x open) (4 x read) lseek open read (2 x write) (2 x read)

lseek (2 x open) write (2 x read) (2 x lseek) open read write lseek (2 x write) read write

lseek (4 x open) (2 x read) lseek open (2 x write) read (2 x open) write (3 x read) lseek

open read mmap open fstat mmap read (2 x lseek) open write read (2 x lseek) read write (2

x read) lseek write (2 x read) open read lseek (2 x read) open read lseek open read (3 x

lseek) open write (2 x read) (2 x lseek) read (2 x write) (2 x read) lseek (3 x open) read

write lseek open (3 x write) lseek open (2 x write) read (2 x write) (2 x read) lseek read

open write (2 x read) lseek (2 x open) write read open write (4 x read) lseek (2 x read)

mmap open fstat mmap read (4 x lseek) (2 x read) write (5 x read) lseek open read (2 x

lseek) (2 x read) (2 x open) read open (2 x read) lseek open read (2 x write) (2 x read)

(2 x lseek) open write read lseek open read mmap read lseek write read lseek open fstat

mmap rt sigprocmask read (2 x open) write read (2 x write) read (3 x lseek) open write (2 x

read) write lseek read (2 x write) lseek (2 x write) (2 x read) (3 x lseek) fstat mmap read

open write read write lseek (2 x open) (2 x read) lseek (2 x read) (2 x open) read open

(2 x read) lseek open read (2 x write) (2 x read) lseek (2 x open) write (2 x read) (2 x

lseek) open read write lseek (2 x write) read write lseek (4 x open) (2 x read) lseek open

(2 x write) read (2 x open) write (3 x read) lseek open read mmap open fstat mmap read (2 x

lseek) open write read (2 x lseek) read write (2 x read) lseek write (2 x read) open read

lseek (2 x read) open read lseek open read (3 x lseek) open write (2 x read) (2 x lseek)

read (2 x write) (2 x read) lseek (3 x open) read write lseek open (3 x write) lseek open

(2 x write) read open write (2 x read) lseek read open write (2 x read) lseek (2 x open)

write read open write (4 x read) lseek (2 x read) mmap open fstat mmap read (4 x lseek) (2

x read) write (5 x read) lseek open read (2 x lseek) (2 x read) (2 x open) read open (2 x

read) lseek open read (2 x write) (2 x read) (2 x lseek) open write read lseek open read

mmap read lseek write (2 x

Figure B.21: The best mimicry attack against the Markov Model for restore (first
part)

324

lseek) open fstat mmap rt sigprocmask read (2 x open) write read (2 x lseek) (2 x open)

write read write (2 x lseek) open write read (2 x open) read open (2 x read) lseek open

read lseek (3 x read) lseek (2 x open) (2 x write) read (2 x lseek) open (2 x write) lseek

(2 x write) (2 x read) lseek (2 x open) (3 x write) read (2 x write) read lseek write (2 x

read) (2 x lseek) read open write (3 x read) lseek open write (3 x read) lseek open write

lseek read (2 x write) read write lseek (3 x open) read (3 x open) fstat read write (2 x

lseek) open write (2 x read) (2 x lseek) open read mmap read lseek write (2 x lseek) open

fstat mmap rt sigprocmask read (2 x open) write (2 x read) lseek read open write read (2

x write) lseek open write read (2 x open) read open (2 x read) (2 x open) read write (3 x

read) lseek (2 x open) write (2 x read) (2 x lseek) open (2 x write) lseek (2 x write) (2 x

read) lseek open read (3 x write) read write read (2 x write) lseek read (3 x write) read

(4 x lseek) write (2 x read) (2 x lseek) read (2 x write) lseek (2 x write) (2 x read) (3 x

lseek) fstat mmap (2 x read) write read write lseek (2 x open) read (2 x lseek) write read

(2 x open) read open (2 x read) lseek open read (2 x write) (2 x read) lseek (2 x open)

write (2 x read) (2 x lseek) open read write lseek (2 x write) read write lseek (3 x open)

write (2 x read) (2 x lseek) (2 x write) read (2 x open) write (3 x read) lseek open read

mmap open fstat mmap read lseek (2 x open) write read (2 x lseek) read (2 x write) read

lseek write (2 x read) lseek read lseek (2 x read) open read lseek open read open write (2

x read) lseek (2 x open) write read write (2 x lseek) open (2 x write) lseek (2 x write) (2

x read) lseek read lseek fstat mmap read lseek read lseek (2 x write) read lseek open write

read (3 x lseek) (3 x read) lseek open read write (3 x lseek) (2 x open) (2 x write) read

write (2 x read) (2 x write) lseek read (2 x lseek) read open write (3 x read) lseek open

write (3 x read) lseek open (2 x write) read (2 x write) read write lseek (2 x open) (2 x

read) (3 x open) fstat read write (2 x lseek) open write (2 x read) (2 x lseek) open read

mmap read lseek write (2 x lseek) open fstat mmap rt sigprocmask read open read write (2 x

read) lseek read open write read lseek write lseek open write read (2 x open) read open (2

x read) lseek open read write (3 x read) (3 x open) write (2 x read) lseek read open (2 x

write) lseek (2 x write) (2 x read) lseek (2 x open) (3 x write) (2 x read) lseek open (4

x read) write read open read (2 x mmap) (4 x read) (3 x open) (2 x write) (2 x read) open

write close

Figure B.22: The best mimicry attack against the Markov Model for restore (second
part)

325

time rt sigaction open write open (4 x rt sigaction) open (2 x write) close munmap close

read write rt sigaction close write (2 x close) read close read close read (2 x write)

close (2 x read) alarm read close open (2 x write) (4 x close) (2 x write) rt sigaction

close open write rt sigaction alarm close read alarm read close read write read close

read close write open write open write open rt sigaction alarm open rt sigaction open read

close open read rt sigaction open write (3 x open) read (2 x close) open read close read

close getcwd open read (2 x close) open (2 x write) open read write close open read close

read close rt sigaction open write rt sigaction alarm write rt sigaction open read (2 x

close) rt sigaction open read (3 x close) open read close write close getcwd open read

close read write close write (2 x open) read rt sigaction open rt sigaction alarm read

(2 x rt sigaction) close read (3 x close) write open read close (3 x write) rt sigaction

close read mmap write close open rt sigaction open (2 x rt sigaction) close munmap write

rt sigaction alarm read close read open read (2 x close) open write rt sigaction open

(2 x read) close open read close write close rt sigaction open write close (2 x write)

rt sigaction open read (3 x close) open read (2 x close) (2 x read) open write (2 x close)

open write alarm close munmap close read write (3 x close) write close read close read

close read write rt sigaction (2 x close) munmap close open read alarm read close read (2 x

write) close rt sigaction close write open write rt sigaction (2 x close) write rt sigaction

alarm close write alarm read open read write read (2 x close) read write (4 x close) (3 x

write) close read mmap write close read rt sigaction open (2 x rt sigaction) close munmap

write rt sigaction alarm read close read write read (2 x close) open (2 x write) open (2 x

read) (2 x close) read close read close getcwd open write close (2 x write) rt sigaction

open read (3 x close) open read (3 x close) write open write close write close rt sigaction

close write open write read close open write rt sigaction alarm close read alarm read close

read write read close read close write (3 x open) write open rt sigaction alarm read (2 x

write) read close open read rt sigaction open write (2 x open) (2 x read) (2 x close) open

read close read close getcwd open read (2 x close) open (2 x write) open read write close

open read close read close getcwd open write rt sigaction alarm write rt sigaction open

read (2 x close) getcwd open read rt sigaction alarm write rt sigaction open read close read

(2 x open) (2 x read) close (2 x read) close open read close read close getcwd open write

rt sigaction open write rt sigaction open read (2 x close) rt sigaction open read close read

close open write close write (2 x open) (2 x read) close write open write rt sigaction alarm

(2 x write) open read (2 x close) rt sigaction open read (3 x close) open rt sigaction close

(2 x read) alarm read close read write read close read open

Figure B.23: The best mimicry attack against the Markov Model for ftpd (first part)

326

write open write (2 x close) open write rt sigaction close read close open read close

read (2 x write) open (2 x read) (2 x close) read close read close getcwd open read

rt sigaction alarm write rt sigaction open rt sigaction (2 x close) read rt sigaction

alarm write rt sigaction open read (2 x close) rt sigaction open read (3 x close) open

write (2 x close) (2 x write) (2 x close) write close rt sigaction open write open read

rt sigaction open write (3 x open) read write close open read close read close getcwd open

read close read write close read (2 x close) read close read write read (3 x close) (2 x

open) write (3 x close) write (2 x open) write close read mmap read close open rt sigaction

open rt sigaction alarm read rt sigaction open read write open read close open write (2 x

open) (2 x read) close open write close read (2 x close) read write read close read close

write open write close read open read rt sigaction close read write open read close read

write read close read close write open write (2 x close) open write rt sigaction close read

close open read close open (2 x write) open (2 x read) close open read close read close

getcwd open rt sigaction close write open write (2 x close) open write read close (2 x read)

open read close open write rt sigaction close (2 x read) write open read rt sigaction alarm

write rt sigaction open read close read (2 x open) (2 x read) close (2 x read) close open

read close read close getcwd open write rt sigaction open write rt sigaction open read (2 x

close) rt sigaction open read (3 x close) open write close write (2 x open) (2 x read) close

write open write rt sigaction alarm write rt sigaction open read (2 x close) rt sigaction

open read (3 x close) open rt sigaction close (2 x read) alarm read close read write read

close read open write open write (2 x close) (2 x open) rt sigaction close read close open

read close read (2 x write) open (2 x read) close open read close read close getcwd open

read rt sigaction alarm write rt sigaction open rt sigaction (2 x close) read rt sigaction

alarm write rt sigaction open read (2 x close) rt sigaction open read (3 x close) open write

close (3 x write) (2 x close) write close rt sigaction open write open read rt sigaction

open write (3 x open) read close rt sigaction open read close read close getcwd open read

close read write close rt sigaction (2 x close) read close read write read (3 x close) (2 x

open) write (3 x close) write (2 x open) write close read mmap read close open rt sigaction

open rt sigaction alarm read rt sigaction open read write open read rt sigaction open

write (2 x open) (2 x read) close open write close read (2 x close) read write read close

read close write close write close read open read rt sigaction close read close open read

close open (2 x write) open (2 x read) close open read alarm read close getcwd open write

rt sigaction alarm write rt sigaction open read (2 x close) rt sigaction open (2 x read) (2

x close) open write close (3 x write) (2 x close) (2 x write) rt sigaction open write open

read write close open

Figure B.24: The best mimicry attack against the Markov Model for ftpd (second
part)

327

B.5 Best Mimicry Attacks against the Neural Network

mmap uname write connect (2 x gettimeofday) sendto gettimeofday mprotect mmap gettimeofday

ioctl connect fstat write read close uname connect open uname munmap mmap open (2 x mmap)

close uname mmap open fstat close recvfrom (2 x gettimeofday) select gettimeofday ioctl

mprotect sendto brk write gettimeofday (2 x mmap) uname gettimeofday fstat close mmap

(2 x open) mmap write gettimeofday sendto close open fstat select poll open close select

uname gettimeofday fstat close mmap write mmap open gettimeofday close mmap brk mmap send

read fstat read gettimeofday (2 x open) gettimeofday brk (2 x mmap) (2 x brk) select send

close read mmap close mmap write send connect (2 x read) select gettimeofday recvfrom

(2 x mmap) close read gettimeofday connect socket close sendto gettimeofday open uname

close poll mmap mprotect open gettimeofday munmap gettimeofday fstat sendto recvfrom

write fstat mmap select read brk mmap ioctl munmap (2 x mmap) read sendto fstat sendto

gettimeofday ioctl select ioctl socket (2 x mprotect) fstat gettimeofday send gettimeofday

write (2 x mmap) write close sendto poll write gettimeofday munmap mmap fcntl munmap

mmap read mprotect write (3 x mmap) close mmap select mprotect close select gettimeofday

mprotect write mprotect read close open send recvfrom mmap close select close mprotect

write socket gettimeofday read close read socket open mmap gettimeofday uname close read

fstat write fcntl open socket fcntl gettimeofday poll fstat read uname brk close read

sendto munmap gettimeofday write close uname recvfrom mprotect (2 x gettimeofday) poll

open munmap open mmap fstat (2 x mmap) recvfrom gettimeofday open (2 x close) write mmap

(2 x gettimeofday) send fcntl gettimeofday write (3 x gettimeofday) ioctl gettimeofday

sendto write read close mmap close sendto fstat sendto munmap read close gettimeofday close

read uname gettimeofday mmap poll gettimeofday mmap close (2 x mmap) close uname write

fcntl select fcntl gettimeofday munmap mmap munmap mprotect fstat mprotect fstat open mmap

gettimeofday write sendto mprotect brk (2 x close) poll (2 x close) brk mmap open fstat

close munmap close connect recvfrom mmap fstat poll gettimeofday (2 x mmap) gettimeofday

write ioctl close (2 x open) recvfrom mmap (2 x sendto) send munmap gettimeofday sendto

close gettimeofday read mmap gettimeofday brk sendto open fstat send mmap close write mmap

sendto connect munmap mmap

Figure B.25: The best mimicry attack against the Neural Network for traceroute
(first part)

328

ioctl munmap mmap read brk poll gettimeofday (2 x write) read close gettimeofday write

gettimeofday read uname gettimeofday close mmap uname fcntl connect (3 x write) select mmap

gettimeofday read ioctl brk gettimeofday open read connect open gettimeofday munmap mmap (2

x open) write socket read open write poll mmap read sendto write fstat mmap socket sendto

(2 x gettimeofday) select mmap socket (2 x fcntl) send read write mmap (2 x munmap) fstat

brk (2 x open) write munmap read close open fcntl mmap (2 x gettimeofday) select mmap open

mmap write fstat select mprotect select recvfrom close poll recvfrom close connect read

gettimeofday fstat mmap fstat recvfrom write gettimeofday poll sendto gettimeofday mmap

gettimeofday mprotect brk fstat socket poll open munmap send (2 x munmap) open recvfrom

(4 x write) fcntl mmap munmap read connect gettimeofday mprotect fcntl read sendto close

mmap read close munmap gettimeofday select sendto mmap munmap close mmap open read socket

gettimeofday brk read select fstat (2 x mmap) fstat mmap open mprotect read mmap munmap

close socket open write uname read select close uname read gettimeofday fstat close sendto

read brk read close mprotect select gettimeofday mmap open munmap select recvfrom (2 x

write) close write read gettimeofday mprotect munmap open (2 x read) munmap fstat open

(2 x read) close mmap sendto brk gettimeofday fstat close munmap (2 x open) fstat open

fstat gettimeofday mmap (2 x recvfrom) gettimeofday write (2 x mmap) uname gettimeofday

socket gettimeofday munmap recvfrom select open fcntl select munmap read (2 x fstat) open

recvfrom sendto fcntl (2 x close) mprotect sendto munmap close fstat read fstat close

fstat (2 x mmap) gettimeofday socket poll mmap open fstat (2 x gettimeofday) open select

open mmap gettimeofday fcntl close read write socket close (2 x mprotect) select fstat

mmap gettimeofday ioctl mmap gettimeofday fstat mprotect close brk write fcntl mmap read

gettimeofday open fstat mprotect write open select open read fstat read mmap brk mmap

open mmap fstat (2 x sendto) (2 x close) gettimeofday fstat close munmap fstat munmap

gettimeofday read fcntl mprotect poll sendto fstat mmap gettimeofday open brk select read

select uname sendto gettimeofday open mprotect open munmap (2 x write) fcntl close fcntl

write sendto select read (2 x munmap) mprotect socket close uname mprotect socket close

mmap gettimeofday socket open mmap poll mprotect gettimeofday open write sendto close brk

ioctl select mmap brk gettimeofday uname

Figure B.26: The best mimicry attack against the Neural Network for traceroute
(second part)

329

gettimeofday close read open recvfrom munmap close sendto mmap (2 x fstat) munmap mmap

(2 x gettimeofday) fcntl read gettimeofday connect munmap read munmap fstat open mprotect

send open write mmap brk mprotect gettimeofday open mmap open close recvfrom gettimeofday

sendto close fcntl fstat write (2 x gettimeofday) connect write read fstat mprotect close

mmap read sendto read munmap fcntl gettimeofday munmap open mmap brk select mmap close

read munmap select close recvfrom fcntl write uname mmap ioctl read close (2 x write)

gettimeofday read fstat gettimeofday read close brk gettimeofday write recvfrom mmap munmap

mprotect close write (3 x fstat) read gettimeofday mmap sendto fstat connect mmap (2 x

gettimeofday) open gettimeofday munmap brk sendto recvfrom sendto brk sendto open mmap

recvfrom select recvfrom (2 x mmap) munmap brk socket fstat mmap close open fstat close

connect close read open ioctl write fcntl connect fstat open select mmap close write socket

close munmap select gettimeofday (2 x open) gettimeofday munmap mprotect (3 x gettimeofday)

mmap socket gettimeofday open read mmap gettimeofday open close gettimeofday open write

fcntl write close connect mmap select mmap gettimeofday write mmap fstat uname close write

close mmap read gettimeofday close sendto select gettimeofday ioctl send mmap read select

mprotect recvfrom munmap close mprotect close ioctl open connect socket open sendto close

open uname connect read (2 x fstat) write close gettimeofday sendto fcntl close write

uname mmap open select send sendto send mmap select write close recvfrom fstat open mmap

fstat send gettimeofday write sendto gettimeofday close munmap close ioctl close sendto

gettimeofday fstat close gettimeofday (2 x close) read mmap gettimeofday open recvfrom

fcntl write fstat connect open uname

Figure B.27: The best mimicry attack against the Neural Network for traceroute
(third part)

330

read open stat munmap geteuid32 close open munmap fcntl64 close llseek (2 x munmap) stat

open write open gettimeofday fcntl64 llseek select munmap getegid32 close getsockopt mmap

gettimeofday mmap2 (2 x gettimeofday) open (2 x stat) select gettimeofday munmap open

munmap mmap2 select write geteuid32 umask fcntl64 gettimeofday mmap llseek select (2 x

close) write llseek munmap stat open gettimeofday llseek stat write close mmap2 getsockopt

select fcntl64 llseek write munmap (3 x read) geteuid32 stat close munmap select munmap

geteuid32 munmap close mprotect read (2 x munmap) open stat select open fcntl64 getegid32

stat fcntl64 read write close mmap send select llseek gettimeofday fcntl64 llseek mmap

llseek close munmap time close mprotect close umask write mprotect munmap stat time mmap

close stat fcntl64 (2 x stat) munmap getsockopt stat select llseek close read stat fcntl64

read close gettimeofday read mmap fcntl64 munmap mmap getsockopt write open getsockopt

read select mprotect send getegid32 open send geteuid32 stat fcntl64 stat close fcntl64

(2 x gettimeofday) read close fcntl64 llseek mprotect munmap llseek (2 x munmap) fcntl64

mmap stat close mprotect munmap (2 x read) llseek (2 x fcntl64) umask write read munmap

getegid32 (2 x select) munmap select umask (2 x close) getegid32 close (3 x read) select

llseek mmap llseek geteuid32 close fcntl64 umask stat munmap stat read stat (2 x mmap)

llseek select time (2 x llseek) write time mmap2 munmap fcntl64 stat close gettimeofday

read fcntl64 stat fcntl64 llseek send stat read mprotect mmap2 stat munmap (2 x llseek)

geteuid32 select mmap stat fcntl64 stat select (2 x read) mprotect mmap2 munmap read select

(3 x munmap) umask stat read llseek (2 x munmap) getsockopt munmap close time stat mmap2

llseek fcntl64 read stat mmap geteuid32 stat open mmap llseek fcntl64 close munmap mmap

geteuid32 mmap stat getsockopt read stat munmap (2 x stat) munmap (2 x read) mmap getegid32

(2 x llseek) mmap read munmap mmap2 stat munmap send llseek mmap2 open select munmap

mmap llseek open fcntl64 close stat (3 x munmap) fcntl64 llseek mprotect llseek umask

stat mmap stat (2 x llseek) munmap open close stat fcntl64 close (2 x select) geteuid32

open read (2 x munmap) read close stat read stat read stat llseek stat fcntl64 close

open stat open stat read llseek munmap fcntl64 close stat llseek select llseek (2 x

open) select time gettimeofday close stat read umask mprotect select mmap read munmap

getsockopt mprotect close time llseek read close munmap read llseek munmap open read

open close select mmap2 time close stat read mmap close stat gettimeofday select munmap

getsockopt munmap fcntl64 munmap read stat fcntl64 mmap llseek umask llseek read stat

open stat munmap close mprotect time llseek munmap llseek read geteuid32 umask close read

getsockopt geteuid32 close select geteuid32 read llseek mmap llseek mmap geteuid32 select

close setresgid32 llseek fcntl64 (2 x munmap) (2 x fcntl64) getegid32 setresgid32 write

gettimeofday (2 x read) fcntl64 llseek open mprotect send mmap (2 x munmap) select time

llseek open getegid32 open stat gettimeofday getegid32 write stat read open munmap time

umask read fcntl64 read llseek geteuid32 munmap write llseek gettimeofday munmap stat

select geteuid32 mmap open read select open munmap mmap2 getegid32 select stat fcntl64

geteuid32

Figure B.28: The best mimicry attack against the Neural Network for samba (first
part)

331

(2 x getsockopt) read (2 x munmap) geteuid32 gettimeofday open (2 x stat) munmap send

llseek select close umask munmap open stat mprotect munmap fcntl64 mmap2 llseek

gettimeofday llseek time mmap2 llseek (2 x stat) fcntl64 gettimeofday umask fcntl64

open close fcntl64 mmap open read gettimeofday read close munmap close stat select stat

write munmap (2 x fcntl64) gettimeofday (2 x llseek) read time read llseek fcntl64 stat

(2 x munmap) mmap open mmap2 read select close fcntl64 munmap setresgid32 select fcntl64

(2 x read) mmap munmap read send munmap fcntl64 open close write read write mmap llseek

select llseek stat mmap llseek stat open getegid32 stat fcntl64 mprotect stat gettimeofday

munmap mprotect geteuid32 mmap close munmap time munmap getsockopt (2 x munmap) stat llseek

read fcntl64 select mmap2 (2 x getsockopt) setresgid32 stat mmap fcntl64 munmap close

mmap stat send stat mmap mmap2 select munmap llseek read munmap stat fcntl64 getegid32

write close munmap mprotect open munmap read gettimeofday umask open llseek time close

select stat fcntl64 stat write gettimeofday llseek time select (2 x munmap) stat (2 x

mmap) write munmap open close llseek getegid32 llseek stat time mmap fcntl64 close mmap2

setresgid32 close fcntl64 getsockopt stat munmap read fcntl64 mmap stat read munmap mmap2

select mprotect close (2 x stat) mmap read munmap geteuid32 llseek (2 x fcntl64) getegid32

munmap open read llseek mmap fcntl64 select mprotect open stat close gettimeofday stat

close munmap stat munmap umask close select close mmap close munmap umask close select

send (2 x munmap) getsockopt (2 x getegid32) close fcntl64 munmap open stat fcntl64 llseek

getsockopt stat select mmap geteuid32 select mmap stat munmap mprotect open (2 x munmap)

llseek (2 x stat) close llseek geteuid32 munmap llseek setresgid32 (2 x mmap2) munmap

time llseek mmap2 munmap read mprotect mmap2 close select read geteuid32 llseek read

fcntl64 geteuid32 read close getegid32 setresgid32 munmap select open (2 x fcntl64) munmap

open read stat read mprotect mmap (2 x munmap) write mmap2 (2 x llseek) send geteuid32

llseek open fcntl64 close munmap setresgid32 munmap getegid32 (2 x munmap) close time mmap2

munmap getsockopt mmap gettimeofday close gettimeofday getsockopt munmap open getsockopt

stat munmap geteuid32 llseek read mprotect mmap close (2 x stat) open stat open (2 x

stat) mmap read close munmap fcntl64 mmap2 mmap read gettimeofday mmap fcntl64 read munmap

select stat gettimeofday open fcntl64 llseek gettimeofday munmap llseek fcntl64 select

read munmap time close fcntl64 munmap mmap close fcntl64 close stat mmap2 munmap open (2 x

munmap) fcntl64 read (2 x close) fcntl64 open time gettimeofday mmap fcntl64 (2 x munmap)

close munmap write setresgid32 write mmap stat mmap2 stat write fcntl64 read (2 x munmap)

fcntl64 stat select close munmap fcntl64 getegid32 fcntl64 geteuid32 gettimeofday mmap read

stat open munmap fcntl64 munmap mmap fcntl64 stat munmap llseek close fcntl64 send stat

fcntl64 close umask (2 x write) munmap fcntl64 time stat (2 x getegid32) fcntl64 mmap write

open fcntl64 select munmap mprotect fcntl64 open mprotect read stat munmap (3 x read) open

select send llseek mmap open stat fcntl64 read open read mmap open munmap fcntl64 llseek

fcntl64 munmap close llseek munmap read (2 x munmap)

Figure B.29: The best mimicry attack against the Neural Network for samba (second
part)

332

fcntl fstat brk fcntl munmap open mprotect mmap write open fcntl write open mmap close (2

x brk) mprotect fstat mprotect mmap mprotect open mmap open (3 x mmap) mprotect fcntl open

chmod open brk write fstat mmap read mprotect open close write open read brk mmap close

read open (2 x mprotect) brk fstat chmod lseek write mmap fstat open read (2 x close) (2 x

mprotect) (2 x fstat) mprotect fstat chmod fcntl (3 x mmap) mprotect read brk write brk (2

x write) (2 x mprotect) open mmap write fstat write open close open ioctl open chmod mmap

write mmap close chmod open fstat write fstat lseek open fcntl mmap mprotect write (2 x

mmap) munmap open close write open write ioctl chmod (2 x close) chmod close mmap mprotect

(2 x open) mmap (2 x fstat) (3 x write) close lseek mmap chown (2 x open) mmap close lseek

fstat open mmap open utime write mmap write fstat mmap open mmap open lseek mmap mprotect

mmap write mmap fstat utime mprotect brk open write close open write mmap open brk open

brk write fstat mmap (2 x open) fcntl close unlink open fstat (2 x write) (2 x lseek) (2 x

close) mmap write mmap write open write (2 x open) lseek (2 x mmap) write fcntl chmod mmap

close chmod utime open write fstat close fstat open (2 x mmap) (2 x open) mmap mprotect

(2 x fstat) fcntl write close fcntl mmap llseek fstat close write mmap close (2 x open)

mprotect unlink open close lseek open mmap close mprotect write fstat mmap write mprotect

write stat fcntl open lseek write brk open fstat open stat mmap fstat mmap open fstat write

open mprotect (2 x fstat) mmap write close open close fstat close fstat mmap brk mprotect

mmap mprotect write open write open (2 x write) mmap read fstat close fstat write close

brk mmap fstat mmap mprotect (2 x write) read mmap fstat mmap (2 x fstat) mmap close mmap

fstat close open mprotect mmap stat close brk (2 x fstat) lseek fstat write fcntl open

fstat brk fstat mmap open write fstat chown write mmap write open fstat open close mprotect

mmap open mmap close mmap write mprotect mmap write mprotect chown lseek write chmod (2 x

fstat) lseek mmap close fstat stat open fstat (2 x write) chown write mmap mprotect close

rt sigaction mprotect fstat open fstat open fcntl stat brk open (2 x write) close write

mmap open (2 x mmap) (3 x fstat) mmap (2 x open) fcntl close (2 x mprotect) close fstat

write mmap fcntl brk mmap fstat (2 x write) ioctl (2 x mmap) unlink write read lseek chmod

open write stat write (3 x mmap) open (2 x chmod) brk fstat open (2 x fstat) write mmap brk

mmap open read mmap open (3 x mmap) open (2 x mmap) fstat (2 x mmap) brk mmap mprotect (2

x mmap) write mmap write open write mmap open mmap lseek fstat (2 x brk) chown (2 x open)

write lseek fcntl brk fstat utime (2 x mmap) (2 x open) fstat fcntl open mmap fcntl lseek

fstat brk mmap mprotect close unlink (2 x write)

Figure B.30: The best mimicry attack against the Neural Network for restore (first
part)

333

(2 x close) lseek (2 x open) write open mmap write munmap open close (2 x open) (2 x mmap)

open write mmap open close (2 x write) mprotect brk open mmap write (2 x open) fcntl open

chown chmod write mprotect mmap close mmap mprotect open (3 x mmap) write mprotect lseek

(2 x open) (2 x fstat) (2 x write) (2 x chown) open mmap open fstat mmap fstat ioctl close

mmap write close mmap write brk mmap open mmap fstat brk close write mmap open mmap chmod

(2 x fstat) open write (2 x fstat) ioctl mprotect open mmap write mmap close brk ioctl

write fstat chown read mprotect chmod write mmap open write stat write close (2 x brk) open

close write mmap open write fcntl mmap fstat unlink close (2 x mmap) write close brk write

lseek open fcntl mmap close utime open mmap chown mmap (2 x write) lseek open mprotect

mmap fstat chown mmap open ioctl (2 x mmap) (2 x open) write fcntl brk (3 x mmap) open

fstat mmap write close mmap fcntl fstat close fstat open mmap chown (2 x fstat) mprotect

(2 x mmap) fcntl mmap chown lseek ioctl mmap fstat brk (2 x mmap) (4 x open) write fstat

mprotect lseek mmap open mprotect open (2 x fstat) mmap brk write open write mmap mprotect

write open mprotect write close open write read mprotect write fstat lseek mprotect mmap

mprotect open write close (2 x mmap) chmod fcntl open fstat mmap open write open mmap utime

mprotect write fstat open mmap open chown (2 x open) mmap fstat write mmap fstat mmap (2

x write) stat write close (2 x fstat) lseek write fstat write brk open mmap open mprotect

(2 x write) close (2 x mmap) close (2 x open) fstat brk chown (2 x write) fcntl close mmap

chmod mmap open write mmap chown close mprotect close fstat chmod write open fstat open

write mmap mprotect lseek (2 x write) chown mmap chown (2 x mmap) chmod fstat write open

(2 x mmap) open mprotect mmap mprotect close open chmod write mprotect brk (2 x fstat)

mmap open mprotect mmap write fstat mmap chmod write fstat mmap open close mmap ioctl (2 x

fstat) mprotect (2 x write) lseek close write mmap brk fstat mmap write mmap chown fstat

write mmap fstat chown mmap fstat mmap open (2 x write) fstat mmap open mmap lseek mmap

open (2 x mmap) (3 x fstat) stat unlink mmap write open write fstat fcntl mmap (2 x open)

mprotect (2 x fstat) munmap chmod mmap fstat mmap mprotect fstat write open fstat open brk

mmap mprotect mmap lseek write lseek write (2 x fstat) mprotect fstat mprotect mmap open

mmap open fcntl open (2 x chmod) chown brk mprotect brk mmap brk chmod mmap fstat write

(3 x open) write mmap open mmap open lseek mmap write fcntl mmap open close fstat mprotect

chown open mprotect mmap (4 x open) (2 x mmap) fstat (2 x mprotect) close (2 x write) read

(2 x mmap) mprotect fstat (2 x write) fstat (2 x open) write mmap open stat close mmap

fstat (2 x mmap) mprotect close open (2 x write) open mmap write fstat (2 x mmap) write brk

mmap write lseek

Figure B.31: The best mimicry attack against the Neural Network for restore (second
part)

334

close mmap write mmap socket mprotect rt sigaction (3 x close) alarm mmap (4 x close) write

connect (2 x close) chdir rt sigaction write close read close rt sigaction mprotect (3 x

close) open socket (4 x close) read write read (2 x close) read brk fcntl chdir (2 x close)

open (2 x close) getcwd fstat close fstat close socket close read socket close time close

munmap read open mmap (2 x close) rt sigaction (2 x close) read (2 x close) fcntl close

chdir close open (2 x close) read open (4 x close) socket close read fcntl rt sigaction

close send close read alarm (2 x close) socket close socket close chdir open rt sigaction

brk read close time brk (3 x close) read open write open close read (4 x close) brk open

fstat close rt sigaction close chdir close write (2 x close) fstat (2 x close) read chdir

close getcwd read mmap munmap (3 x close) rt sigaction (2 x close) (2 x rt sigaction)

mmap (2 x close) read close getcwd close munmap close alarm fstat (2 x close) socket read

write send rt sigaction close read (4 x close) rt sigaction fcntl rt sigaction mmap open

close write (2 x read) close alarm read (6 x close) mmap (2 x close) mmap read (3 x close)

send (2 x close) rt sigaction (5 x close) rt sigaction close read brk fstat rt sigaction

mmap close rt sigaction write close mmap socket (5 x close) rt sigaction close write close

rt sigaction (2 x close) socket rt sigaction read (2 x close) rt sigaction (2 x close) open

close chdir brk close send open send time write close write close open close socket close

fchdir (2 x close) mmap close socket close write send (2 x close) mprotect (2 x close) mmap

open close open close brk fstat (2 x close) read close (2 x open) (2 x close) brk close

read rt sigaction getcwd close brk read close fstat close rt sigaction close read close

socket write close mmap close open close munmap (3 x close) (2 x read) socket (2 x read)

close (2 x rt sigaction) close write close socket mmap read (3 x close) rt sigaction write

munmap (5 x close) chdir (2 x mprotect) (3 x read) mmap close read close rt sigaction getcwd

rt sigaction munmap send (3 x close) fcntl fstat mmap (2 x close) open close write open

close mmap (2 x munmap) close rt sigaction (2 x close) chdir rt sigaction close fstat write

(2 x close) rt sigaction fstat (2 x close) read mprotect close (3 x open) mmap close write

(3 x close) connect munmap write read rt sigaction close send brk (5 x close) socket close

munmap close mmap read munmap close munmap close read (2 x close) mmap brk (3 x close) brk

close write fstat read close rt sigaction read (3 x close) read

Figure B.32: The best mimicry attack against the Neural Network for ftpd (first part)

335

(8 x close) alarm read close mmap (2 x close) brk rt sigaction (2 x close) chdir (3 x close)

getcwd (2 x close) rt sigaction close rt sigaction read socket (2 x close) read send (2 x

close) (2 x open) (6 x close) (2 x write) brk (3 x close) read (2 x mmap) mprotect close

socket send (4 x close) open mmap (5 x close) read (2 x close) send close read (2 x close)

fcntl (3 x close) mmap write close munmap fcntl mprotect mmap (2 x close) read rt sigaction

socket close fcntl close brk munmap brk read rt sigaction (2 x close) alarm (3 x close)

open fcntl read brk close read rt sigaction (5 x close) rt sigaction close mmap close write

close send close read (4 x close) rt sigaction close read close getcwd (2 x close) mmap (2

x close) read (3 x close) munmap close write close rt sigaction (8 x close) rt sigaction

(2 x close) alarm chdir (2 x close) mprotect brk (2 x close) rt sigaction close mmap close

open (2 x close) mmap (2 x close) brk fstat (2 x close) socket (2 x read) socket close

write (2 x close) send getcwd close open socket (3 x close) read fcntl write close mmap

close read socket fstat close fstat close read (2 x close) read close brk write close (2

x open) close alarm (3 x close) send socket (2 x close) connect rt sigaction chdir (4 x

close) open mprotect (4 x close) read mprotect write rt sigaction munmap mmap close write

time close socket close read (3 x close) brk (4 x close) socket (3 x close) rt sigaction

read brk (4 x close) read close rt sigaction mmap close write alarm (2 x close) read brk

close (2 x munmap) alarm (8 x close) send socket close getcwd (4 x close) rt sigaction (2

x close) send (2 x close) (2 x read) close munmap open close read close connect open fcntl

(2 x read) close mprotect close read open socket rt sigaction close open brk (2 x close)

write close socket (2 x close) open brk (2 x read) rt sigaction read (3 x close) read fstat

close rt sigaction close mmap (3 x close) mmap mprotect (3 x close) brk connect rt sigaction

read (2 x close) mmap read alarm rt sigaction close getcwd close brk (3 x close) munmap (2 x

close) munmap (2 x close) fstat chdir rt sigaction (2 x close) connect write (3 x close) brk

(3 x close) open close mmap (6 x close) send (5 x close) read open read close brk send (4 x

close) mmap (2 x close) rt sigaction (3 x close) send (3 x close) brk close read close read

write (4 x close) fstat (4 x close) socket open (10 x close) open brk rt sigaction close

rt sigaction open mmap open read (2 x close) rt sigaction send munmap chdir (2 x close)

mprotect close brk close send open read close rt sigaction (2 x close) fcntl (2 x close)

fstat (2 x close) mmap rt sigaction close chdir close fcntl close send rt sigaction (3 x

close) chdir (8 x close) rt sigaction read close chdir (5 x close) rt sigaction (4 x close)

read (2 x close) read rt sigaction write (4 x close) brk fstat (3 x close) read close (2 x

open) close fcntl munmap

Figure B.33: The best mimicry attack against the Neural Network for ftpd (second
part)

Appendix C

Linux i386 System Calls

In Chapter 10, the mimicry attacks are analysed in terms of the system calls which

they execute to hide the true intent of the attack. Such an analysis includes catego-

rization of system calls where each category of system calls specialize in facilitating

a particular operating system function.

The categorization and description of system calls which are employed in Sec-

tion 10.2.6, are detailed further in this appendix. The list is compiled from various

resources such as the Linux Assembly website1 (in particular the documentation pre-

pared by Boldyshev [8]) and the Kernel development source codes2. An installation

of Red Hat 9.0 with Kernel Development Packages installs the relevant source codes

at /usr/src/linux-2.4.20-8 where 2.4.20-8 is the kernel version number and may

change depending upon the operating system version. New system calls are added

and the existing system calls are updated and rearranged as new Linux distributions

emerge, therefore this appendix should be considered as a guideline on what each

system call does and where it is located as opposed to a definitive and final source

of information. The reader should visit the Linux Assembly website for the updated

version of system call definitions.

According to Boldyshev [8], system calls can be categorized according to where

they are defined in the Kernel source. To this end, Boldyshev [8] provides six kernel

sources where system calls are defined, namely arch/i386/, fs/, ipc/, kernel/, mm/,

net/. Each category is discussed separately in the following subsections. For more in-

formation on kernel source codes and system call definitions, the reader is encouraged

to see the Linux Assembly website.

1The URL for the Linux Assembly website, as of January 2009, is

http://asm.sourceforge.net/.
2The Linux Kernel Archives website contains the kernel source codes for current and past Linux

kernels at http://www.kernel.org/, as of January 2009.

336

http://asm.sourceforge.net/
http://www.kernel.org/

337

C.1 Architecture-Dependent System Calls (arch)

Architecture-dependent system calls are defined in this category. i386 is known as

IA-32 as well, which comprise the 32 bit processor architectures. The system calls

in this category include numerous system calls which have a non-standard calling

sequence on the Linux/i386 platform and other architecture-dependent system calls

which involve process handing and signalling.

• clone

• execve

• fork

• idle

• ioperm

• iopl

• ipc

• modify ldt

• old mmap

• olduname

• pause

• pipe

• ptrace

• rt sigreturn

• rt sigsuspend

• sigaction

338

• sigaltstack

• sigreturn

• sigsuspend

• uname

• vfork

• vm86

• vm86old

C.2 File System-Related System Calls (file)

This category focuses on the system calls related to file system operations such as

opening, closing, reading and modifying a file. Furthermore, this category contains

system calls which support the random access to files and system calls which modify

the ownership and permissions of a file.

• access

• bdflush

• chdir

• chmod

• chown

• chroot

• close

• creat

• dup

• dup2

339

• fchdir

• fchmod

• fchown

• fcntl

• fdatasync

• flock

• fstat

• fstatfs

• fsync

• ftruncate

• getcwd

• getdents

• ioctl

• lchown

• link

• llseek

• lseek

• lstat

• mkdir

• mknod

• mount

340

• newfstat

• newlstat

• newstat

• nfsservctl

• oldumount

• open

• poll

• pread

• pwrite

• quotactl

• read

• readlink

• readv

• rename

• rmdir

• select

• stat

• statfs

• symlink

• sync

• sysfs

341

• truncate

• umount

• unlink

• uselib

• ustat

• utime

• utimes

• vhangup

• write

• writev

C.3 System Calls Related to Inter-Process Communication (ipc)

Inter-process communication enables communication between the threads of a process

or different processes. System calls which facilitate inter-process communications are

defined in this category.

• msgctl

• msgget

• msgrcv

• msgsnd

• semctl

• semget

• semop

• shmat

342

• shmctl

• shmdt

• shmget

C.4 System Calls Related to Kernel Functions (kernel)

The Linux kernel is responsible for managing hardware resources and providing com-

munication between the applications and the hardware resources. The system calls

relevant to Kernel functions are defined in this category. To name a few, the system

calls in this category handles process management, timing and the priority scheduling

of the processes.

• acct

• adjtimex

• adjtimex

• alarm

• capget

• capset

• create module

• create module

• delete module

• exit

• get kernel syms

• getegid

• geteuid

343

• getgid

• getgroups

• gethostname

• getitimer

• getpgid

• getpgrp

• getpid

• getppid

• getpriority

• getresgid

• getresuid

• getrlimit

• getrusage

• getsid

• gettimeofday

• getuid

• init module

• kill

• nanosleep

• newuname

• ni syscall

344

• nice

• prctl

• query module

• reboot

• rt sigaction

• rt sigpending

• rt sigprocmask

• rt sigqueueinfo

• rt sigtimedwait

• sched get priority max

• sched get priority min

• sched getparam

• sched getscheduler

• sched rr get interval

• sched setparam

• sched setscheduler

• sched yield

• setdomainname

• setfsuid

• setgid

• setgroups

345

• sethostname

• setitimer

• setpgid

• setpriority

• setregid

• setresgid

• setresuid

• setreuid

• setrlimit

• setsid

• settimeofday

• setuid

• sgetmask

• signal

• sigpending

• sigprocmask

• ssetmask

• stime

• sysctl

• sysinfo

• syslog

346

• time

• times

• umask

• wait4

• waitpid

C.5 System Calls Related to Memory Management (memory)

System calls related to memory management operations such as allocating, deallo-

cating and locking memory resources are defined in this category.

• brk

• mlock

• mlockall

• mprotect

• mremap

• msync

• munlock

• munlockall

• munmap

• sendfile

• swapoff

• swapon

347

C.6 System Calls Related to Network Communications (network)

System calls which facilitate network communication are defined in this category,

such as establishing a socket connection and transmitting data over the socket.

• accept

• bind

• connect

• getpeername

• getsockname

• getsockopt

• listen

• recv

• recvfrom

• recvmsg

• send

• sendmsg

• sendto

• setsockopt

• shutdown

• socket

• socketcall

• socketpair

	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Motivation and Objectives
	Contributions
	Organization of the Thesis

	Stack Overflows
	Definition
	Components of Stack-based Buffer Overflow Attacks
	Shellcode
	Return Addresses
	The NoOP sled

	Discussion

	Background on Detectors and Attacks
	Previous Work on Detectors
	Misuse Detectors
	Anomaly Detectors

	Previous Work on Mimicry Attacks

	Intrusion Detection Systems Utilized
	Misuse Detectors
	Snort

	Anomaly Detectors
	Stide
	Process Homeostasis (pH)
	Process Homeostasis with a Schema Mask (pHsm)
	The Markov Model-Based Detector
	Auto-Associative Neural Network

	Learning Algorithms Utilized
	A Generic Evolutionary Computation Model
	Grammatical Evolution
	Representation
	Training
	Fitness Function
	Search Operators

	Linear Genetic Programming
	Representation
	Training
	Fitness Function
	Search Operators

	Linear Genetic Programming with Pareto Ranking
	Representation
	Training
	Fitness Function
	Search Operators

	Optimizing Buffer Overflow Characteristics
	Background and Motivation
	Methodology
	Grammatical Evolution
	The Vulnerable Application
	The Detector
	Discussion of the Search Space Size

	Results
	Discussion of Results

	Evolving Exploits at Assembly Level
	Background and Motivation
	Methodology
	Fitness Function
	Runtime Environment and Fitness Evaluation
	Linear GP
	Discussion of the Search Space Size

	Results
	Minimal Instruction Set
	Extended Instruction Sets

	Discussion of Results

	Evolving Exploits at System Call Level
	Background and Motivation
	Methodology
	Vulnerable Applications
	Linear Genetic Programming
	Fitness Calculation and Pareto Ranking
	Discussion of the Search Space Size

	Results
	Traceroute Box Plots
	Restore Box Plots
	Samba Box Plots
	Ftpd Box Plots

	Training Sensitivity of Anomaly Detectors
	A Closer Look at Preambles
	Preamble Analysis
	Discussion of the Preamble Analysis

	Discussion of Results

	Analysis of Mimicry Attacks
	Deploying a Mimicry Attack Against Numerous Detectors
	Analysis of the Anomaly Rates
	Analysis of the Delays
	Discussion of the Analysis Results

	Comparing with Mimicry Attacks in Previous Work
	Comparison with the ftpd Mimicry Attack Wagner2002
	Comparison with the traceroute Mimicry Attack Giffin2006
	Discussion of the Analysis Results

	Comparison of `White-Box' Attacks
	The `White-Box' Attacks Against Stide
	The `White-Box' Attacks Against pH
	The `White-Box' Attacks Against pHsm
	The `White-Box' Attacks Against the Markov Model
	The `White-Box' Attacks Against the Neural Network
	Discussion of the `White-Box' Search Space Size
	Discussion of the Analysis Results

	Analysis of Vulnerable Applications
	Analysis of System Calls and Normal Databases
	Discussion of the Analysis Results

	Analysis of Mimicry Attacks
	Attacks Against Stide
	Attacks Against pH
	Attacks Against pHsm
	Attacks Against the Markov Model
	Attacks Against the Neural Network
	Summary of the Analysis
	Discussion of the Analysis Results

	Conclusion
	Contributions
	Discussion of Results
	Guidelines for Detector Research
	Future Research Directions

	Bibliography
	Detector Training Set Analysis
	Stide Training Set Analysis
	pH Training Set Analysis
	pH with a Schema Mask Training Set Analysis
	Markov Model Training Set Analysis
	Neural Network Training Set Analysis

	Best Mimicry Attacks
	Best Mimicry Attacks against Stide
	Best Mimicry Attacks against pH
	Best Mimicry Attacks against pH with a Schema Mask
	Best Mimicry Attacks against the Markov Model
	Best Mimicry Attacks against the Neural Network

	Linux i386 System Calls
	Architecture-Dependent System Calls (arch)
	File System-Related System Calls (file)
	System Calls Related to Inter-Process Communication (ipc)
	System Calls Related to Kernel Functions (kernel)
	System Calls Related to Memory Management (memory)
	System Calls Related to Network Communications (network)

