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Intrusion detection systems, which aim to protect our IT infrastructure are not infallible. Attackers take
advantage of detector vulnerabilities and weaknesses to evade detection, hence hindering the effective-
ness of the detectors. To do so, attackers generate evasion attacks which can eliminate or minimize the
detection while successfully achieving the attacker’s goals. This work proposes an artificial arms race

between an automated ‘white-hat’ attacker and various anomaly detectors for the purpose of identifying
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detector weaknesses. The proposed arms race aims to automate the vulnerability testing of the anomaly
detectors so that the security experts can be more proactive in eliminating detector vulnerabilities.
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1. Introduction

Anintrusion detection system (IDS) is a combination of software
and hardware that collects and analyses data from networks and
hosts to determine if there is an attack [1] and possibly react to it as
in the case of intrusion prevention systems [2]. Different detection
techniques can be employed to search for evidence of intrusions. To
this end, two major categories exist for detection techniques: mis-
use and anomaly detection. Misuse detection systems use a priori
knowledge on attacks to look for traces of attacks. In other words,
they detect intrusions by employing a description of the misuse [3].
On the other hand, anomaly detectors adopt the opposite approach,
which is, to know what is normal, and then find the deviations from
normal behavior. These deviations are considered as anomalies or
possible intrusions. Anomaly detection systems rely on knowledge
of normal behavior to detect attacks.

Naturally, intrusion detection systems are by no means infalli-
ble. Software vulnerabilities and hardware faults can cause them
to misclassify or malfunction. In addition to traditional software
errors, detectors are also susceptible to detector-specific vulner-
abilities such as misconfigurations, blind-spots and deficiencies
in detection methodology. Sophisticated attackers try to deploy
attacks without getting detected. To this end, they may make
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use of detector vulnerabilities to alter their actions thus evading
detection, rendering the detector ineffective. Although the evasion
methodologies vary, the main objective of the attacker is to alter the
attack so that it does not trigger signatures or generate anomalous
behavior, while carrying out the attacker’s goals.

In this work, we propose an arms race between artificial ‘white-
hat’ attackers and candidate detectors. By ‘white-hat’ we imply
an automated process for vulnerability testing (attack generation)
without access to private information regarding the detector archi-
tecture. Feedback from the detector is limited to public information
that a legitimate user might expect to receive; such as alarms. Such
a scenario implies that we could deploy the same generic white-
hat approach to any number of different detector architectures.
Relative to the previous approaches discussed in Section 2, this
means that we make extensive use of heuristic search - in this
case Genetic Programming - to conduct the search for vulnerabili-
ties under the guise of general objectives of an attack. Conversely,
previous researchers made strong assumptions regarding the oper-
ation of specific detector architectures and face limitations on the
subset of detectors they may evaluate (see [4] for a performance
comparison between the two general approaches). We note that
this work provides an empirical evaluation of an automated tech-
nique for vulnerability testing. Developing a theoretical model for
testing detectors is beyond the scope of this work.

The proposed Evolutionary Exploit Generator (EEG) makes two
assumptions (Section 3). There is a common goal of an attack - in
this case adding the user to the root login file - and the system
calls of the target application may be profiled. Given that the target
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applications take the form of generic Linux applications, such infor-
mation can be collected without accessing privileged information
from the application itself. We use the set of most common appli-
cation system calls to define the instruction set for GP. The fitness
function is expressed as a multi-criteria objective rewarding alarm
rate minimization, correct formulation of an exploit and - in the
case of the more sophisticated detectors - delay minimization.

The basic EEG framework represents a generic framework for
designing buffer overflow style attacks, where this represents a
major class of intrusions [5]. However, in order to be effective, users
need to be clear regarding what the concept of an attack represents,
particularly with respect to the relative contributions of preamble
and exploit to the construction of an attack (Section 3). With the
nature of buffer overflow attacks established, we then introduce
the vulnerable applications and the corresponding set of candidate
detectors on which benchmarking will later be performed (Section
4).

The following benchmarking study emphasizes three themes
(Section 5). Firstly it is important to evolve attacks with the pream-
ble included. Earlier works have tended to ignore the contribution
of this entirely and make the mistaken claim that detectors can
be avoided with zero anomaly rate. Secondly, the delay mecha-
nisms embedded in some detectors (i.e., the IDS is able to react
to potential intrusions by delaying the running process) has the
capacity to render all the original attack variants, and all but one
EEG attack, ineffective; again as a consequence of the contribution
of the preamble. Finally, we are able to characterize the strategies
used by EEG to obfuscate the true intent of an attack, with different
strategies clearly being adopted depending on the detector against
which EEG is deployed.

Section 6 brings these findings together and in doing so rec-
ognizes that a major factor in the most successful attack is the
corresponding succinctness of the preamble. That is to say, the finite
size of the vulnerable buffers may enforce system call quotas in
which the attack must be expressed. Consequently, if the preamble
is short, then the corresponding relative contribution of the exploit
component of an attack(the part the attacker has most control over)
has much more impact on the overall alarm rate. Thus the relative
count of instructions that do not conform to the normal application
behavior profile is much lower. Naturally attacks with lengthy and
anomalous preambles will be next to impossible to obfuscate.

2. Related work

Earlier works in vulnerability analysis make extensive use of
knowledge regarding the internal design of the detector, with the
emphasis being directed purely at the exploit. Wagner and Soto
[6] investigated an approach to alter the system call sequences
of an attack in order to render it undetectable to a specific IDS,
namely Stide. Given a minimum sequence of malicious system
calls to support execution of a successful attack - the core attack
- their goal was to find other sequences of system calls that avoid
detection by the target IDS yet still achieve the objective of the
core attack. This was achieved by manually adding system calls
that have no effect on the success of the attack. Similarly, Tan
et al. [7] aimed to undermine the anomaly based IDS Stide [8] by
identifying weaknesses and modifying the malicious system call
sequences to exploit these limitations. To do so, they first modified
the attack by hand to change the ownership of a critical file. Sec-
ondly, they inserted system calls from data characterizing normal
behavior into the malicious system call sequence. Vigna et al. [9]
described a methodology to generate variations of an attack to test
the quality of detection signatures of Snort. Stochastic modification
of attack code was employed to generate variants of attacks to ren-
der the attack undetectable. Techniques such as packet splitting,

evasion and polymorphic shellcode were discussed. Kruegel et al.
[10] developed a static analysis tool for Intel x86 binaries in order
to automatically identify instructions that can be used to redirect
control flow. They use symbolic execution to achieve this. Giffin
et al. generated mimicry attacks against Stide by applying auto-
matic model checking to prove that no reachable operating system
configuration corresponds to the effect of an attack [11]. However,
in their approach, the operating system model, application (pro-
gram) model and system call specifications as well as the attack
configuration are still generated manually.

On the other hand, our work contributes to the existing work
on evasion attacks in two ways. Firstly, our approach represents
an arms race between various anomaly detectors and artificial
‘white-hat’ attackers i.e., the Evolutionary Exploit Generator (EEG)
framework. The arms race rewards the attacker as it builds success-
ful attacks, which can defeat the target detector. In such an arms
race, the detector responds to attacks by providing feedback from
the detector in the form of anomaly rates or other detection infor-
mation such as the nature of dynamic measures deployed against
an attack (delays). Consequently, the attacker utilizes the detection
feedback to build evasion attacks, which achieve the objectives of
the attacker while minimizing the detection from the target detec-
tor. The main result of the arms race is a set of evasion attacks,
which can evade the target detector. The resulting attacks provide
the defenders with crucial information that can be utilized to elim-
inate the weaknesses of the target detector. Needless to say, the
exploits produced are entirely a result of the Evolutionary Exploit
Generator with no hand crafting of the exploits.

Second, the previous work [6,7] assumed that the attacker can
take control of the vulnerable application silently i.e., no consider-
ation was given to the contribution of the preamble (Section 3.1)
to attack detection. By contrast, in this work, we acknowledge that
evasion attacks against anomaly detectors may not be as easy to
perform in practice due to the attacker’s lack of control over the
system calls executed before the attacker’s shellcode is invoked.
Indeed, it readily becomes apparent that only when the preamble
component of an attack contributes a significantly lower propor-
tion of the attack code is it possible to evade the more sophisticated
detectors (Section 5). We are also able to demonstrate that as the
target detector changes, the composition of the attack controlled by
EEG undergoes a significant change, implying that different detec-
tors do have rather different implicit weaknesses.

3. Evolving buffer overflow attacks

In this section, the EEG framework is introduced to evolve
attacks for analyzing vulnerabilities of detectors along with a brief
discussion of buffer overflow attacks. Furthermore, we discuss the
relevant work employing similar arms race methodologies for other
attack types, although this work focuses on buffer overflow attacks.

3.1. Generic design decisions of a buffer overflow attack

In a typical buffer overflow exploit, the first step is to corrupt
the data types and local variables, which gives the attacker control
of the application. For example, in case of the original ftpd attack
against wu-ftpd server [12], the attacker achieves this by logging
onto the ftpd server anonymously and issuing malformed com-
mands such as CWD ~ {. The actions taken by the attackers before
they gain full control of the application are called the preamble.
During the preamble phase, the application is still operational and
the attacker does not have full control yet, hence the attacker may
not be able to prevent the vulnerable application from generating
anomalous behavior.

Please cite this article in press as: H.G. Kayacik, et al., Can a good offense be a good defense? Vulnerability testing of anomaly detectors
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After the attacker gains control of the application, the second
step is to execute code to carry out a malicious action such as
spawning a root shell or creating a super-user account. Commonly,
this is referred to as the exploit and is achieved by injecting a
shellcode (further discussed in Section 4.3). A shellcode is a short
segment of an assembly program, which aims to execute code on
the vulnerable host. In the case of the original ftpd attack, the shell-
code spawns a Linux shell with super-user privileges and binds it
to a port so that the attacker can login without supplying a pass-
word. Attackers can modify the exploit components fairly easily by
changing the injected shellcode with the objective of evading detec-
tion while simultaneously satisfying the goals of the exploit. On the
other hand, modifying the preamble requires finding an alternative
way to take advantage of the vulnerability or finding another vul-
nerability, and might therefore be more sensitive to modification.
In short, the preamble sets up the exploit code to make use of an
application vulnerability whereas the exploit performs a malicious
action. Under an anomaly detection setting, both aim to minimize
the likelihood of detection by using instructions that in some way
also appear to be statistically no different from ‘normal’ behavior.
In practice, we maintain that it is more difficult to achieve this for
the preamble than the exploit, whereas earlier research has ignored
the contribution of the preamble entirely when evaluating detector
performance.

When analyzing system call traces, the boundary between the
preamble and the exploit can be determined by locating the first
action of the shellcode [13]. The four original attacks [14-16,12]
employed in the analysis execute an execve(‘/bin/sh’) system call
to spawn a Linux shell with super-user privileges. Any system call
including and after execve(‘/bin/sh’)is aresult of the spawned Linux
shell whereas the system calls before execve(‘/bin/sh’) are executed
while the attacker was corrupting the data types and variables to
deploy the exploit. Although the previous works [17,7,18] were
aware of the functional contribution of preambles, they assumed
that the attacker could gain control of the vulnerable application
silently. Specifically, Wagner and Soto [17] state that:

“Moreover, we also assume that the attacker can silently take
control of the application without being detected. This assump-
tionis not always satisfied, but for many common attack vectors,
the actual penetration leaves no trace in the system call trace.
For instance, exploiting a buffer over-run vulnerability involves
only a change in the control of the program, but does not itself
cause any system calls to be invoked, and thus no syscall-based
IDS can detect the buffer overrun itself.”

Our results indicate that the attacker may not always be able to
take control of the application silently. Furthermore, our analysis of
the preamble reveals that the actual penetration does leave anoma-
lous system calls in the trace, at least in the cases of traceroute,
restore, samba and ftpd applications benchmarked here. The exper-
iments of Section 5 therefore compare the original and the evasion
attacks generated by the EEG framework. Furthermore, results are
reported for each component separately (i.e. preamble, exploit) as
well as for the entire attack (i.e. preamble +exploit).

3.2. Framework for Evolutionary Exploit Generation

The process at the center of the proposed arms race involving
the Evolutionary Exploit Generation (EEG) framework is Genetic
Programming (GP). The GP paradigm differs from most machine
learning methodologies in that a ‘population’ of candidate solu-
tions is maintained concurrently throughout the search process
[19]. Each candidate solution, or individual, takes the form of a
program i.e., a sequence of system calls in the case of this work.
Although parameters for the system calls are specified, there is no
need to support the specification of the internal state i.e., register

values. This makes the resulting attacks real exploits as opposed to
just system call sequences. The evolved system call sequences are
transformed into executable shellcodes, as discussed in Section 4.3.

Aside from being able to conduct a stochastic search over a code
based representation, GP provides several properties that make it a
particularly attractive model for evolving exploits [20]. We consider
the top three properties to take the form of:

Representation: Machine learning paradigms generally impose
an a priori representation on the nature of a solution e.g., neurons
in artificial neural networks, kernels in support vector machines
or rules in decision tree induction. The representation required by
the exploits imposes a system call based representation (although
solutions based on the assembly language of the target plat-
form would also be appropriate [21]). This precludes the utility
of most machine learning algorithms. Thus, the automated vari-
ants of earlier research in this area have relied on exhaustive
search, an option made possible by making extensive use of priv-
ileged information from the target detector e.g., the content of
the detector’s behavioral database post configuration (training)
[17,18,22]. By assuming the representation of the actual appli-
cation, the credit assignment process becomes more direct and
support for including the preamble is straightforward (merely a
question of concatenating preamble and exploit).

Multi-criteria fitness: Expressing exploit generation as a single
objective - for example constructing code representing a valid
exploit - would not sufficiently encompass the breadth of the task
at hand. In particular, exploits need to achieve a malicious objec-
tive while simultaneously minimizing the alarm rate and reducing
any delay imposed by dynamic/reactive detectors. One approach
to doing this might be to merely linearly combine three perfor-
mance functions into a single scalar value of fitness. However,
Evolutionary Computation provides a much better mechanism in
the form of Pareto multi-criteria formulations [23]. In particular,
assuming a Pareto formulation implies that objectives are ranked
relative to the number of other individuals they dominate in the
Pareto sense. This avoids any need to impose arbitrary scaling of
different objectives and encourages solutions to take the form of
a front of non-dominated individuals as opposed to converging to
a single possibly suboptimal solution.

Obfuscation: Code bloat or introns are a well known by-product
of search in GP [19]. Although generally removed post-training, in
this application, they are fundamental for providing the ability to
obfuscate the resulting solutions. In short, it is the properties of
the intron code that are used to model the statistical properties of
normal behavior as measured by the alarm rate of the detector.

The principle EEG design decisions are now limited to defining
the instruction set (representation) and search and selection oper-
ators (establishes basis for credit assignment), and establishing the
appropriate feedback (goals/objectives) used to guide the process
of evolution.

Fig. 1 details the components associated with the EEG and the
arms race. Representation of the attacks and the application of the
search and selection operators are handled by the Evolutionary
Exploit Generator. Code injection component takes an exploit gen-
erated by EEG such as a system call sequence and converts it into
an executable format such as a shellcode. The resulting executable
is then injected to the vulnerable application using the injection
method provided a priori, generally in the form of vulnerability
reports [14,16,15,12]. In this framework, the detector is consid-
ered as a ‘black-box’ component, which implies the attacker (i.e.
EEG) has only access to detection feedback which is produced as
a normal operation of the detector. Attack validation component
takes the detector feedback and converts it into a scalar value which
supports the credit assignment process.

Please cite this article in press as: H.G. Kayacik, et al., Can a good offense be a good defense? Vulnerability testing of anomaly detectors
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Fig. 1. EEG framework, which formulates the arms race.

Instruction Set File Descriptors <fd> Buffers <buf>
0001 : exit ()
0010 : open (<fd>) 01 : filel 01 : bufferl
0011 : write (<fd>, <buf>) 10 : file2 10 : buffer2
0100 : read (<fd>, <buf>) 11 : file3 11 : buffer3
0101 : close (<fd>)

Fig. 2. Sample EEG instruction set and parameters.

The representation that EEG employs is discussed in Section
3.2.1. Section 3.2.2 establishes the objectives for the attack valida-
tion component and Section 3.2.3 details the search and selection
operators that EEG implements. The code injection methods are
briefly discussed in Section 3.3, whereas the detectors employed in
our framework are detailed in Section 4.2.

3.2.1. Representation

We use knowledge of the top 20 system calls as utilized by each
vulnerable application to define the appropriate subset of instruc-
tions (established in Section 4.1). From an attacker’s perspective
such an analysis involves recording the system calls on a local copy
of the application and naturally does not require internal knowl-
edge of the detector. The underlying assumption behind this is that
instructions that are not in the application’s top 20 will be more
likely to raise alarms than instructions in the top 20.

The specificrepresentation that EEG utilizes defines instructions
as 4 bytes where 2 bytes are allocated for the function identifier
(i.e. the opcode) and one byte is allocated for each terminal of the
function (i.e. the operands). This implies that all instructions have
the same number of bytes. Therefore, the first two bytes of the
instruction identify the function (i.e. the system calls) to be used
whereas the last two bytes identifies which terminal(s) (i.e. the
system call parameters) the function uses.

Integer Binary
Representation Representation
40 0010 10 00
44 0010 11 00
59 0011 10 11
61 é 0011 11 01
88 0101 10 00
92 0101 11 00
16 0001 00 00

A sample instruction set for EEG is provided in Fig. 2. The sample
instruction set consists of system calls which can take file descrip-
tors or memory locations (i.e. variables) as parameters, which are
provided in Fig. 2 as well. Although EEG employs 4 bytes to define
an instruction, the example provided in Figs. 2 and 3 employs 1
byte to define an instruction for the sake of simplicity.

Fig. 3 presents an EEG individual the genotype of which is rep-
resented in integer format. Based upon the mapping defined by the
instruction set and parameters in Fig. 2, the genotype is mapped
to a phenotype. To do so, each instruction is converted to a binary
representation. The first 4 bits of each gene define the instructions,
whereas the last four bits are allocated for the definition of the
instruction parameters (2 bits for each parameter, up to two param-
eters). For example, the third instruction from the top in Fig. 3
contains the integer value 59, which is equivalent to 00111011
in binary. The first four bits, 0011, map to the instruction write
(<fd>, <buf>).In the list of file descriptors in Fig. 2, the 10 maps
to the file descriptor file2 and the 11 maps to the buffer buf fer3.
If the instruction has one parameter (e.g. in case of integer value
44, which maps to open(file3)), the last two bits (i.e. 00) are
ignored. As new instructions are introduced to the individuals -
during the initialization of the population and the application of
the mutation operator - the validity of the individuals is checked
to ensure that the instruction and parameter fields produce a valid
instruction.

Phenotype

open (file2)

open(file3)

write(file2, buffer3)

q read(file3, bufferl)

close(file2)

close(file3)

exit ()

Fig. 3. An example of a genotype-phenotype mapping for an EEG individual.
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(a) Success =0 Table 1
(b) IF the sequence contains open (‘/etc/passwd’) THEN Success += 1 Genetic Programming parameters.
(¢) IF the sequence contains write (‘toor::0:0:root:/root:/bin/bash’) THEN Parameter Setting
Success += 1 —

(d) IF the sequence contains close (‘/etc/passwd’) THEN Success += 1 Crossover 0.9 probability )
(e) IF open precedes write THEN Success += 1 Mutation 0.01 probability, linearly decreasing to 0 over the

: N o - L tournament limit
(F) IF write precedes close THEN Success +=1 Swap Instruction swap within an individual with 0.5

. . . o s e . probability
Fig. 4. Fitness function for establishing the objectives of modifying the Linux pass- Selection Tournament of 4 individuals

word file.

3.2.2. Fitness calculation and Pareto Ranking

Pareto Ranking is a method for combining multiple objectives
under the concept of dominance [23]. Specifically in the case of a
problem in which objectives are being minimized, solution A dom-
inates solution B, if and only if A is as good as B in all objectives and
A is better than B in at least one objective. An individual which is
not dominated by any other individual is called a non-dominated
individual. Pareto Ranking succeeds in reducing the multi-objective
vector into a scalar fitness value (i.e. the rank) without combining
features or assigning a priori weights. The Pareto rank of an individ-
ual in our experiments is equal to the number of individuals which
it dominates [24]. In terms of evasion attack characteristics to be
optimized, the following objectives are considered:

1. Attack success. The original attack contains a standard shellcode,
which uses the execve system call to spawn a Linux shell upon
successful execution. Execve is a system call, which executes the
program given as the first argument. Since execve is not a fre-
quently used system call for traceroute, restore, samba and ftpd,
it is expected that the original attack will be detected easily. To
this end, a different strategy is employed for defining the exploit
such that the need to spawn a Linux shell is eliminated [21]. Typ-
ically, most programs perform I/O operations - in particular to
open, write to/read from and close files. Therefore the goal of the
attack is altered to involve the following three steps, which aim
to gain super-user privileges:

(a) open the Linux password file (‘/etc/passwd’);

(b) write aline, which provides the attacker a super-user account
which can login without a password;

(c) close the file.

The objective of the search process conducted by EEG is to
discover a sequence of system calls (and appropriate arguments),
which perform the above three steps in the correct order (i.e.
the attack cannot write to a file which it has not opened), while
minimizing the anomaly rate from the detector. A behavioral
success function rewarding the above behavior awards a total
of 5 ‘points’ for establishing the behavioral steps for the ‘core’
attack in Fig. 4.

2. Anomaly rate. The anomaly rate represents the principal metric
for qualifying the likely intent of a system call sequence; awould-
be attacker naturally wishes to minimize the anomaly rate of the
detector.

3. Delay. In addition to reporting anomaly rates, various anomaly
detectors respond to anomalies by enforcing delays, as discussed
in Section 4.2. Therefore, the attacker aims to minimize the
delays associated with the attacks.

3.2.3. Search and selection operators

The search process progresses through the iterative application
of selection and search operators. The selection operator is applied
in two stages; in part 1, two individuals are identified from the pop-
ulation (the parents) with probability of selection proportional to
the rank of the individual. Search operators are then applied to the
individuals, resulting in two children. The children are appended
to the population and the population is Pareto ranked. The worst
two individuals (i.e. the individuals with the lowest two ranks)

Stop criteria 100,000 tournaments or until the convergence
criteria is met

If the Pareto ranks remain unchanged over 10
tournaments

500 individuals with instruction selection
probability proportional to the percentage of the
instruction in normal use cases

Initialized over 240 system calls, maximum 1000
system calls

Replacement Children replace the lowest ranked two individuals
Training time Approximately 2 days

Number of runs 50

Convergence criteria

Population

Program length

are discarded from the population, hence restoring the popula-
tion size, or part 2 of the selection operator’s role. Moreover, by
pursuing a fitness function based on Pareto ranks, we are able to
seamlessly incorporate multiple criteria into the performance eval-
uation without resorting to arbitrary combinations of unrelated
objectives [24]. The training parameters, which remain the same
over all applications, are detailed in Table 1. Individuals are defined
using a variable length format, and population initialization creates
individuals with varying program lengths.

Search operators take three forms: cut and splice crossover,
instruction-wise mutation and instruction swap. Note that all
search operators are applied stochastically relative to a predefined
probability of application, Table 1. The specific details of each oper-
ator are detailed below.

Cut and splice crossover. The crossover operator provides a
scheme for investigating instruction sequences that exist cur-
rently in the population, but in different contexts. The cut and
splice crossover operator selects, with uniform probability, sepa-
rate crossover points on each parent. Therefore, the children can
have different lengths from their parents. Fig. 5 shows an example
of cut and splice crossover.

Swap. The basic motivation of the swap operator is to provide the
opportunity for investigating the significance of different instruc-
tion orders within the same individual (the case of a correct
instruction mix, but in the wrong order). The swap operator is
applied to a single individual, selecting two instructions with uni-
form probability and interchanging their position, an example of
which is shown in Fig. 6.

Instruction-wise mutation. The mutation operator provides a
way to introduce new sequences to the individual. Mutation is

Parent1 Parent2 Child1 Child2
40 36 40 36
44 69 44 69
59 55! 84 55
88 84 16 59
61 16 88
92 61

92

Fig. 5. An example of the cut and splice crossover operator.

Please cite this article in press as: H.G. Kayacik, et al., Can a good offense be a good defense? Vulnerability testing of anomaly detectors
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Individual before Individual after

mutation mutation
40 36
44 44
| [Comion_ ) [
88 55
61 84
92 92

Individual before Individual after

swap swap
40 40
44 44

59 Swap N 59
88 ’ 61
‘ 61 88

92 92

Fig. 6. Examples of the mutation and swap operators.

applied instruction-wise, that is to say, each instruction is tested
independently for modification. If the test returns true then the
instruction is replaced with an alternative instruction from a pre-
defined list of instructions, as shown in Fig. 6. Moreover, the
probability of applying the mutation operator decays linearly with
the tournament count, thus lowering the likelihood of introduc-
ing instructions, which are not currently in the population as the
population evolves. Effectively, this places more emphasis on the
crossover operator as the evolution progresses, thus reinforcing
the reuse of system call sequences which were demonstrated ear-
lier to minimize detection.

3.3. Similar applications of the arms race

While this work focuses on evolving buffer overflow attacks to
evade anomaly detectors, various related work exist which formu-
late an arms race for generating different types of attacks. In order
to apply the arms race on different types of attacks, the following
design decisions need to be made:

Representation of the exploits. Depending on the vulnerability
being exploited and the detector being evaded, a suitable lan-
guage for evolving attacks should be defined, which constitutes
the EEG instruction set. Examples of instruction sets are assembly
instructions, system calls or network packet descriptions.

Code injection method. The attacker should be able to produce
the attack executable to deploy the attack. Typically, this can be
considered as a code injection task. Thus, the method in which the
evolved attack is converted into an executable should be defined
prior to the arms race. This implies that the attacker knows how
to take advantage of the vulnerability. In the case of buffer over-
flow attacks, the exploits that the EEG generates in this work are
embedded in C programs (provided in the vulnerability reports
[14,16,15,12]) which exploits the vulnerability and facilitates the
code injection.

Interpretation of the detector feedback. The feedback from the
detector should be converted into a scalar value, upon which the
fitness is calculated. This generally involves collecting the output
that the detector generates as a part of its normal operation (such
as the alerts, anomaly rates and other detection feedback) and cal-
culating a fitness value. In case of evolving buffer overflow attacks,
this involves collecting the anomaly rates and the delays associ-
ated with the attacks and combining them into a scalar value using
Pareto Ranking.

Below, we overview various applications of similarly formulated
arms race techniques.

Kayacik et al. [25] employed a similar arms race methodology
to evolve shellcode on assembly level using Genetic Programming.
The main goal is to evolve executable code that can deploy the
attack successfully while evading the Snort misuse detector. The

instruction set is a subset of the Intel 32-bit instruction set. The
fitness function described the core objectives of the executable,
namely: to deploy the attack successfully while remaining unde-
tected. The detector feedback is obtained from Snort. The success
of the attack is determined by a runtime environment, which simu-
lates the execution of the assembly code. The results indicated that
the arms race could discover different ways to deploy an attack
by changing the composition and the ordering of the instructions.
Evolving shellcode on assembly level complements the arms race
proposed in this work since it provides means to transform the
system call sequences into executable assembly code. In order to
identify the weaknesses of network based detectors, Dozier et al.
[26] proposed an arms race between ‘evolutionary hackers’ and
artificial immune system-based detectors, in which a host was
protected by a population of detectors. A Genetic Algorithm and
various particle swarm search methods were employed to craft
malicious network packets, which were then sent to the detectors.
The fitness was the percentage of the detectors that failed to detect
the attack. Their results indicated that the arms race identified
numerous weaknesses by discovering malicious packet sequences,
which evaded the detectors. Similarly, LaRoche et al. [27] proposed
a GP-based approach to evolve TCP/IP packets for port scanning
to evaded Snort misuse detector. Their attacks take the form of
instruction sequences, which set the relevant fields of TCP and IP
headers. Consequently, sequences of packets are generated which
correspond to a port scan. The fitness is assigned based on the
attack’s ability to discover open ports as well as the number of
alarms that it raises. Their results demonstrated that GP succeeded
in evolving port scan attacks, which evade Snort by using additional
instructions to break the packets apart in time to remain below
the detection thresholds. Utilizing a similar arms race, LaRoche and
Zincir-Heywood [28] also evolved data link header fields to gener-
ate Denial of Service attacks on 802.11 networks against the Snort
wireless misuse detector. While not formulated as an arms race, the
work of Vigna et al. [9] provides an interaction between an auto-
mated attacker, which takes a set of attack templates and applies
various mutation techniques such as packet splitting or using alter-
nate encoding to evade network-based misuse detectors. The attack
templates are generally buffer overflow attacks and the mutation
techniques aim to preserve the validity of the attack while intro-
ducing additional control sequences or changing the composition.
In addition to the feedback from Snort and ISS RealSecure detectors,
the success of the mutant exploit was determined by checking if it
writes to a pre-determined file. Their results demonstrated that all
the baseline attacks (i.e. core attacks before mutation) are detected
whereas majority of the mutated attacks evaded detection.

4. Vulnerable applications and candidate detectors

In this section, we introduce the set of vulnerable applications
used in the later benchmarking study and therefore establish the
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Fig. 7. Most frequent 20 system calls for traceroute.

application specific instruction set employed by EEG for evolving
exploits.

The set of detectors, against which vulnerability testing is car-
ried out, is then established where we provide a cross-section of
detector complexity as well as covering different families of detec-
tor architecture. We then provide a discussion of how the evolved
system call sequences are converted into executable shellcodes.

4.1. Vulnerabilities

In our arms race experiments, four Linux vulnerabilities are
included: traceroute, samba, restore and ftpd, all of which have
known and documented vulnerabilities.! These are also the vulner-
able applications most frequently used in the vulnerability testing
literature [6,7,18]. The traceroute and restore vulnerabilities can
be exploited locally whereas ftpd and samba vulnerabilities can be
exploited remotely. The versions of the operating system and the
vulnerable application are provided along with references to the
exploits. All vulnerable applications and the corresponding exploits
are deployed with default settings. As established by the previous
work, vulnerable applications are executed under different scenar-
ios to establish the normal behavior for each application [6,7,18,20].

The attacks against the four Linux applications are buffer over-
flow attacks (Section 3.1), where the attackers take advantage of
the vulnerabilities to inject their malicious code. In a typical buffer
overflow attack, the attacker injects more data than the vulnerable
variable can hold, hence causing the excess data to spill into the
unallocated memory space or into other allocated variables. The
main goal of a buffer overflow attack is to overwrite the system
state information stored in the memory and consequently divert
the execution to attacker’s code. Although the experiments detailed
in this paper employ buffer overflow attacks, the proposed arms
race is applicable to a wider scope of attacks - as discussed in Sec-

1 See Security Focus Vulnerability archives http://www.securityfocus.com.

tion 3.3 — where the objective of the attacker is to design an attack,
which can perform the objectives of a core attack while remaining
undetected.

We note that, while the vulnerable applications employed in
this work are for Linux, our approach is applicable to buffer vulner-
abilities that exist on other operating systems. The exploits that the
arms race generates are OS independent as long as the vulnerabil-
ity — which can be considered as a method for injecting the evolved
exploit - exists on multiple platforms. For example, an attacker can
take advantage of the LibTIFF buffer underflow vulnerability [29] on
numerous operating systems such as Solaris, Mac OS X, iPhone OS as
well as Linux by crafting a malicious TIFF image (containing a shell-
code) as long as the operating system makes use of the vulnerable
TIFF library.

4.1.1. Traceroute configuration

Traceroute is a network diagnosis tool, which is used to deter-
mine the routing path between a source and a destination by
sending a set of control packets to the destination with increasing
time-to-live values. A typical use of traceroute involves providing
the destination IP, whereas the application returns information on
the route taken between source and destination. Red Hat 6.2 is
shipped with traceroute version 1.4a5, where this is susceptible
to a local buffer overflow exploit that provides a local user with
super-user access [14]. The attack takes advantage of vulnerabil-
ity in malloc chunk, and then uses a debugger to determine the
correct return address to take control of the program. In order to
establish traceroute behavior under normal conditions traceroute
is executed by supplying different targets, as established by the
previous work [13]. As per the discussion of EEG (Section 3.2) the
most frequent 20 system calls employed by the application (Fig. 7)
are used to define the instruction set.

4.1.2. Restore configuration
Restore is a component of Linux backup functionality, which
restores the file system image taken by the dump command.
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Fig. 8. Most frequent 20 system calls for restore.

Files or directories can be restored from full or incremental
backups. Restore version 0.4b15 on Red Hat 6.2 is vulnerable
to an environment variable attack where the attacker modi-
fies the path of an executable and runs restore. This results
in executing an arbitrary command with super-user privileges,
which leads to a root compromise. In the published attack

1 10 100

[16], attacker spawns a root shell. In order to establish normal
behavior for restore, restore is executed numerous times to pro-
cess backup files with different sizes [13]. The most frequent
20 system calls for restore application is shown in Fig. 8. The
instruction set for the restore attacks contain the system calls in
Fig. 8.
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Fig. 9. Most frequent 20 system calls for samba.
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4.1.3. Samba configuration

The Samba suite provides printer and file sharing for Windows
clients and can run on most Linux variants. Samba sets up printer
and network shares that appear as disks and printers under a Win-
dows operating system. Red Hat 9.0 is shipped with Samba suite
version 2.2.7a, which has a vulnerability [15] that can be exploited
over the network to gain super-user privileges. The buffer over-
flow occurs when a Samba service tries to copy user supplied data
into a static buffer without checking. The published attack binds a
root shell to a network port. To establish normal behavior, samba is
deployed on a host and activity was generated involving the mount-
ing and unmounting of a samba share and various file operations
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Fig. 10. Most frequent 20 system calls for ftpd.

through system calls, monitoring the applications at the system
call level provides a suitable granularity for detecting the attacks.
Although numerous alternative detectors exist for detecting
buffer overflow attacks, there are various traits, which make the
anomaly detectors discussed in this section suitable for the experi-
ments. First, they employ different detection methodologies while
monitoring application system calls, with sliding window, Markov
and frequency based pattern recognition detectors all being con-
sidered. Second, depending on the complexity of the detector, they
provide feedback in the form of anomaly rates and delays, which
can be utilized to guide the search for the evasion attacks. The
detectors discussed in this section are employed with their default

on the samba share including file edit and copy operations [13]. parameters.
The most frequent 20 system calls that samba application makes is
detailed in Fig. 9. 4.2.1. Stide

4.1.4. Ftpd configuration

Red Hat 6.2 is shipped with Washington University Ftp Server
version 2.6.0(1), which provides FTP access to remote users.
WuFtpD 2.6.0(1) is susceptible to an input validation attack where
the attacker can corrupt the process memory by sending malformed
commands and overwrite the return address to execute a shellcode.
Although the attack is an input validation attack [12], the deploy-
ment is similar to a buffer overflow attack. In order to establish
a normal behavior, numerous FTP sessions are formulated where
each session involves a login followed by a series of file upload and

Forrest et al.[8] employed a methodology motivated by immune
systems. This characterizes the problem as distinguishing ‘self from
‘non-self (normal and abnormal behaviors, respectively). An event
horizon is built from a sliding window applied to the sequence
of system calls made by an application during normal use. The
sequences formed by the sliding window are stored in a table,
which establishes the normal behavior model. During the deploy-
ment (detection) phase, if the pattern from the sliding window is
not in the normal behavior database, it is considered a mismatch.
Stide is employed with the parameterization assumed in earlier
studies (Section 2) and are listed in Table 2.

download operations [13]. The most frequent 20 system calls that

ftpd application makes is detailed in Fig. 10.

4.2. Anomaly detectors

The anomaly detectors employed in this work monitor system
call traces to detect the attacks. System calls are operating system
routines, which provide the interaction between the applications
and system resources such as memory, disks and peripherals. Given
that the operations, which alter the system state are handled

4.2.2. Process Homeostasis (pH)
Process Homeostasis (pH) [30] represents a second generation
anomaly detector and is therefore designed to address specific

Table 2
Stide configuration parameters.

Parameter Setting

Sliding window length 6
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Table 3 Table 4
pH configuration parameters. pHsm configuration parameters.
Parameter Setting Parameter Setting
Look-ahead pair window size 9 Look-ahead pair window size 20
Locality frame window size 128 Number of taps taken from the sliding window 9
Delay factor 1 Tap locations Determined before training

Suspend execve after 10 anomalies

Suspend execve duration 2 days
Anomaly limit 30
Tolerize limit 12

drawbacks of Stide. pH is implemented as an extension to the Linux
2.2 Kernel. Therefore, pH monitors system calls more efficiently by
capturing system calls directly at the kernel level as opposed to
Stide, which employs Strace? to capture system calls. pH moni-
tors the changes in short sequences of system calls by employing
look-ahead pairs. While employing the sliding window approach,
pH does not store the sliding window patterns but records tuples,
which consist of the current and past system calls and the sliding
window location. Somayaji [30] established that the look-ahead
method is more efficient to store and could potentially converge
to a normal profile more quickly than the sequence method. Addi-
tionally, tolerization and sensitization concepts were introduced.
Tolerization allows pH to improve false alarm rates by leaving out
minimal anomalies, which are likely to be caused by slight changes
in normal behavior. Sensitization prevents abnormal behavior from
leaking into the normal behavior database [30].

In addition, pH responds to attacks by slowing down the offend-
ing process. The delay is an exponential function of the locality
frame (LF) count where the locality frame count aims to identify
the clusters of anomalies. To this end, pH simply maintains a count
of how many of the past system calls within the locality frame were
anomalous. Consequently, even though the attack might minimize
anomaly rate, it can still be detected if the remaining anomalies are
clustered together. pH was employed with the training parameters,
which are listed in Table 3.

4.2.3. Process Homeostasis with a schema mask (pHsm)

Inoue and Somayaji [31] discussed the differences between
look-ahead pairs and sequences. In their paper, the authors also
proposed an improvement to pH based upon the concept of a ran-
dom schema mask. Their main motivation was the observation
that longer windows improve detection rates hence there exists
a potential to increase the difficulty of generating evasion attacks
against pH (and indirectly Stide and variants). We call the extended
pH as pH with a schema mask (pHsm) in this work. In pHsm, a longer
sliding window is maintained and a number of taps are taken from
the sliding window. The locations of the taps are determined ran-
domly before training and this location information constitutes the
schema mask. The configuration parameters for pHsm are detailed
in Table 4.

4.2.4. The Markov Model-based detector

The Markov Model is a statistical modeling technique, which is
useful for building probabilistic models of event sequences evolv-
ing in time. Markov Models have been utilized within the context
of intrusion detection systems [32,33] as in the related case of a
Finite State Automata representation [34]. The Markov Model was
selected as an anomaly detector in this work because: (1) it can
build probabilistic models using exemplars from only one class (i.e.
normal behavior) and (2) it can capture temporal (i.e. sequence)
information without employing a sliding window.

2 Strace can be downloaded from http://sourceforge.net/projects/strace/.

Locality frame window size 128

Delay factor 1

Suspend execve after 10 anomalies
Suspend execve duration 2 days
Anomaly limit 30

Tolerize limit 12

Although higher order Markov Models exist where the current
state depends upon a number of previous states, the Markov Model
anomaly detector implemented in this work employs a first order
Markov Model. In a first order Markov Model, the next state is only
dependent upon the current state, where such an assumption is
widely employed in these systems to reduce the number of ‘free
parameters’, which require estimation. In order to establish val-
ues for the above model parameters, the Baum-Welch model is
assumed [35]. The detection decision is based upon a character-
ization of state transition behavior, which was employed in the
previous Markov Model detector approaches [32] and in Stide [36].
After the Markov Model is trained, a test sequence is presented.
If there exists a transition in the test sequence, which was not
encountered during training (hence, the probability transition is
zero), a mismatch flag is set. A count of the mismatch flag is main-
tained, and the anomaly rate is defined by the number of mismatch
flags divided by the total number of transitions encountered. Such
an anomaly rate implies that, if the test sequence follows the train-
ing model (i.e. normal behavior), it will encounter zero or low
numbers of mismatch flags. Thus, a low anomaly rate is assigned.
The configuration parameters for the Markov Model detector are
provided in Table 5.

4.2.5. Auto-associative neural network

The auto-associative neural network is a multi-layer percep-
tron configured in a ‘bottleneck’ topology - i.e., the hidden layer
is configured with a reduced neuron count relative to the input and
output spaces (which are presented with the same exemplar during
training). Such a bottleneck forces the network to identify the most
appropriate encoding to correctly reconstruct the input at the out-
put post training [37-40]. The main idea behind an auto-associative
neural network is to develop models from one-class data and make
decisions on the test data based upon the similarities to, or diver-
sions from, the model that the auto-associative neural network
encapsulates. In our experiments, an auto-associative neural net-
work was employed as an anomaly detector. As opposed to the
other detectors discussed in the previous sections, which employ
sequence information, the input to the auto-associative neural net-
work takes the form of the frequency distribution of system calls.
This approach bears similarities to the detector employed by Kang
etal.[41], which uses a bag of words representation as the detector
input. As such, the resulting frequency distribution constitutes the
normal behavior characteristics. Given the frequency distribution
vector for the test trace, the detection is therefore based upon the

Table 5

Markov Model parameters.
Parameter Setting
Order First order

Number of states
Training algorithm

223 (number of system calls)
Baum-Welch
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divergence between the frequency distribution vectors of the test
trace and the ‘normal behavior’. Since the frequency distribution of
atrace is calculated after the trace is complete, the auto-associative
neural network can be considered as an ‘off-line’ detector, which
provides post-mortem analysis of the system call traces after they

H.G. Kayacik et al. / Applied Soft Computing xxx (2010) XXx—-xxx 11
Table 6
Auto-associative Neural Network parameters.
Parameter Setting
No. of neurons in hidden layer 15
Hidden layer transfer function Hyperbolic tangent sigmoid (tansig)
No. of neurons in output layer 223

are executed.

Given g dimensional data, a multilayer perceptron with p nodes
in the hidden layer (p «<q) and q nodes in the output layer is
trained. The neural network aims to produce an output similar
to the inputs provided during training. When a test input is pre-
sented, the neural network will produce the output similar to
the input if the input is similar to what was encountered during
training. From the perspective of anomaly detection, if the applied
input does not produce an output similar to the input, it is con-
sidered anomalous. In order to measure the degree of anomaly
and produce an anomaly rate, the input and the output that the
neural network produces are compared using Euclidean distance.
The calculated distance varies between 0 and 100, where larger
numbers indicate anomalous behavior. The training parameters for
the auto-associative Neural Network are detailed in Table 6. The
credit assignment takes the form of the very efficient second order
conjugate gradient optimization algorithm, making training much
more efficient and more accurate than the regular back propagation
algorithm [42].

1: jmp short variables
2: syscalls:

3 pop esi

4: XOor eax, eax

5: mov [esi + 11], al
6: mov [esi + 47], al
7 mov byte [esi + 46], Oxa
8 lea eax, [esi + 16]
9 mov long [esi + 48], eax

Output layer transfer function Linear (purelin)

Training function Conjugant gradient backpropagation
Maximum epochs 1000

Minimum mean square error 106

4.3. Executing a system call sequence in practice

The anomaly detectors, which are introduced in Section 4.2
monitor system call sequences therefore the arms race generates
exploits in the form of system call sequences. When the attacks are
deployed in practice, it is necessary to create the appropriate shell-
code for a given system call sequence. Fig. 11 provides the shellcode
for system call sequence open write close, which wasautomat-
ically generated by the converter software that we developed. The
converter software contains a library of system call templates. Each
template is an assembly code segment which ensures that the regis-
ters are set properly to represent the system call parameters before
calling the int 0x80 instruction. The converter software takes a

; put \O in file name (replaces #)

; put \O in malicious text (replaces #)

; put \n in malicious text (replaces *)

; load a pointer to malicious text in eax

; move the pointer value, replacing values XXXX

100 5555555555555 OPeN 5555555355555

11: XOor eax, eax ; eax is set to zero

12: mov al, 5 ; system call number for open

13: lea ebx, [esi] ; ebx contains a pointer to the file name

14: mov cx, 1090 ; file permissions, 1090 denotes append, create if not exists
15:  mov dx, T744q ; if newly created, these are the file permissions

16: int 0x80 ; execute the open system call

17: mov [esi + 12] , eax ; save file descriptor, replacing values YYYY

18: 5555555555555 write 5555555555555

19: XOor eax, eax ; eax is set to zero

20: mov al, 4
21: mov long ebx, [esi + 12]

; system call number for write
; move file descriptor pointer to ebx

22: mov ecx, [esi + 63] ; move malicious text pointer to ecx

23: xor edx, edx ; edx is set to zero

24: mov dx, 9999 ; move length of the malicious text (i.e. 31)

25: sub dx, 9968 ; into edx without creating null characters in shellcode
26: int 0x80 ; execute the write system call

271 5555535555555 close 555555555555

28: XOr eax, eax ; eax is set to zero

29: mov al, 6
30: mov long ebx, [esi + 12]
31: int 0x80
32: 53333 eXit i
33: XOr eax, eax
34: mov al, 0x01

36: int 0x80
37: variables:
38: call syscalls

; eax is set to zero

; system call number for exit
35: xor ebx, ebx ; ebx is set to zero

; execute the close system call

; system call number for close
; move file descriptor pointer to ebx
; execute the close system call

39: ; 0123456789012345 byte index provided for readability
40: db ‘/etc/passwd#YYYY’ ; file name
41: ; 678901234567890123456789012345678901 byte index

42: db ‘toor::0:0:root:/root:/bin/bash*#XXXX’

; malicious text

Fig. 11. Assembly code of the system call sequence open() write() close(), which opens the password file and adds a super-user account.
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Table 7
Anomaly rates of the preamble and exploit components of the traceroute attacks
(evolved attacks compared to the original).

Table 8
Anomaly rates of the preamble and exploit components of the restore attacks
(evolved attacks compared to the original).

Preamble Exploit Attack Preamble Exploit Attack

Stide Original 6.98% 71.48% 61.26% Stide Original 77.82% 88.13% 84.69%

Evolved 16.67% 10.96% Evolved 0.40% 46.25%

pH Original 36.49% 73.91% 66.27% pH Original 81.01% 90.70% 87.49%

Evolved 11.71% 18.29% Evolved 0.10% 48.57%

pHsm Original 77.78% 83.06% 81.79% pHsm Original 93.67% 98.30% 96.77%

Evolved 27.60% 29.28% Evolved 0.31% 57.92%

MM Original 8.54% 47.89% 38.78% MM Original 35.08% 48.84% 44.26%

Evolved 0.10% 0.20% Evolved 0.10% 21.05%

NN Original 22.04% 70.21% 31.19% NN Original 13.29% 15.53% 14.00%
Evolved 2.47% 1.63% Evolved 2.90% 5.60%

system call sequence and automatically creates the shellcode. The
resulting shellcode can be embedded into the attacks [14,16,15,12]
after being encoded in a C-type string format using s-proc.>

There are two main differences between an assembly program
and a shellcode. First, shellcode cannot contain any null characters
since memory copy functions such as strcpy will only copy until the
null byte is reached thus failing to copy the entire shellcode. How-
ever, most system calls require arguments in the form of C-style
strings, which should be terminated by a null byte. Thus, the shell-
code needs to prepare the null terminated strings without causing
a null byte in the shellcode encoding. A well-known method for
obtaining a null byte is to apply the XOR instruction on a register
and moving its contents to where the null byte is needed. For exam-
ple, step 4 in Fig. 11 sets the EAX register to zero since the result of
the XOR instruction, which is stored back in EAX register, is always
zero regardless of the value of the EAX. Consequently, step 5 moves
the contents of the 1-byte AL register (which is a null byte) to the
memory location (denoted by # in line 40), where the string needs
to be terminated.

Second, all parameters and variables required to execute the sys-
tem calls properly should be self-contained in the shellcode. Since
the address of the vulnerable variable changes at runtime, a shell-
code needs to a way to address the variables irrespective of the
actual memory address. To this end, jmp/call method [43] can be
utilized, in which the shellcode jumps to a call instruction first (step
1in Fig. 11). The call instruction (step 38, Fig. 11) directs the execu-
tion to the actual shellcode. However, the use of the call instruction
results in the address of the parameters to be stored in ESI. Thus,
in Fig. 11, the parameter ' /etc/passwd’ can be accessed at [ESI]
and the parameter ‘toor::0:0:root:/root:/bin/bash’ can be
accessed at [ESI +16].

The assembly code in Fig. 11 starts by jumping to the call instruc-
tion (step 38), which directs the execution back to step 3 after the
address of the parameters are stored in ESI register. Step 4 sets the
EAX register to zero, creating a null byte. Using the null byte, steps 5
and 6 copy the null byte to the end of the strings, locations of which
are denoted by # (steps 40 and 42). A next line character is inserted
(step 7), the location of which is shown by *, step 42. Using the LEA
instruction, the address of the malicious text is obtained and stored
in its allocated 4-byte space denoted by xxxx (step 42).

Each system call segment in Fig. 11, sets the register values
to system call parameters as defined in Linux manual pages.* For
example, to execute an open system call, the system call number
is stored in EAX, the pointer to the file name is stored in EBX, the
flags and permissions are stored in ECX and EDX, respectively. After
the system call is executed (step 17) open system call returns a

3 Erickson [43] provides a detailed discussion of shellcode encoding and the s-proc
application.

4 Section 2 of the Linux manual pages, which can be accessed by typing man 2
syscalls in a Linux terminal, provides the system call definitions.

file descriptor, which is then stored in its allocated 4-byte space
denoted by vyyY (step 40).

5. Results

The following empirical evaluation is developed through
three themes: Anomaly rate minimization; Significance of detec-
tor counter measures; and Exploit analysis. Specifically, earlier
approaches to detector vulnerability testing concentrated on the
Stide detector alone and focused on minimizing the exploit
anomaly rate as opposed to the attack anomaly rate.

5.1. Anomaly rate minimization

In order to determine the anomaly rates of the original attacks,
original traceroute, restore, samba, ftpd attacks [14,16,15,12] are
downloaded from the SecurityFocus website and deployed against
the detector configurations detailed in Section 4.2 on the four
vulnerable applications detailed in Section 4.1. Needless to say,
depending on the detection methodologies and configuration
parameters, the original attacks produce different anomaly rates
for different anomaly detectors [44].

In the proposed arms race, multiple solutions are maintained;
hence multiple attacks are generated. For the comparisons, the
attacks that produced the least attack anomaly rates are selected.
It is important to emphasize that evasion attacks are generated
against each detector separately, hence there are five evasion
attacks, one against each detector. Tables 7-10 provide a com-
parison of anomaly rates between the original attacks and the
evolved attacks, for traceroute, restore, samba, and ftpd applica-
tions, respectively.

Anomaly rates of the preambles in Tables 7-10 show that an
attacker is generally not able to take control of an application
‘silently’ in every case. For example, the traceroute preamble pro-
duces between 6.98% and 77.78% anomaly rates depending on the
anomaly detector. Even though the attacker manages to generate
exploits with very low anomaly rates, the attack (i.e. pream-

Table 9
Anomaly rates of the preamble and exploit components of the samba attacks
(evolved attacks compared to the original).

Preamble Exploit Attack

Stide Original 3.57% 60.04% 10.16%
Evolved 0.50% 3.00%

pH Original 9.97% 60.51% 16.02%
Evolved 0.10% 8.11%

pHsm Original 12.07% 99.60% 99.95%

Evolved 29.23% 15.84%
MM Original 6.78% 25.53% 9.03%
Evolved 0.10% 5.45%
NN Original 6.34% 21.15% 5.73%
Evolved 16.68% 5.77%
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Fig. 12. Anomaly rate of the attacks with different exploit lengths for traceroute, restore, samba and ftpd applications.

ble + exploit) will still contain anomalies. Indeed distinct trends
emerge with respect to evolved versus original exploits. Thus under
the original exploit, the anomaly rate from the exploit alone is gen-
erally higher than that of the contribution of the preamble alone.
Moreover, under the original configuration, the resulting attack
anomaly rate is generally lower than the exploit alone. Conversely

Table 10
Anomaly rates of the preamble and exploit components of the ftpd attacks (evolved
attacks compared to the original).

Preamble Exploit Attack
Stide Original 19.04% 47.52% 22.78%
Evolved 57.14% 19.30%
pH Original 21.94% 47.85% 25.54%
Evolved 0.10% 16.11%
pHsm Original 14.30% 57.29% 20.27%
Evolved 35.55% 20.19%
MM Original 6.11% 13.65% 7.15%
Evolved 0.10% 4.47%
NN Original 6.88% 18.86% 6.91%
Evolved 3.46% 1.26%

under EEG, anomaly rates of the exploit are generally lower than
that of the preamble, whereas the overall attack anomaly rate is
generally higher than that of the exploit alone. Needless to say,
only very rarely does the attack anomaly rate of the original attack
approach is as low as that of the evolved attacks.

While a stealthy exploit with 0% anomaly rate can reduce the
overall attack anomaly rate, the anomaly rate of the preamble along
with its length play an important role in determining the anomaly
rate of the resulting attack. Fig. 12 shows the anomaly rate of the
attacks, when a stealthy exploit with varying lengths are utilized for
traceroute, restore, samba and ftpd. In case of traceroute, employ-
ing a long and stealthy exploit reduces the anomaly rate of the
attack from approximately 70% to 5%. On the other hand, in case
of restore and samba, where the preamble is long, the benefit of
employing a longer exploit is considerably less. For example, a
restore attack against Stide can reduce the attack anomaly rate from
approximately 80% to 40%. However, a samba attack against Stide
only reduces the anomaly rate from approximately 20% to 10%.
Thus, the anomaly rate of the overall attack (i.e. preamble + exploit)
depends on the length and the anomaly rate of the preamble.
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Fig. 13. Locality frame counts and the associated delays (y-axis is in logarithmic
scale).

5.2. Effectiveness of counter measures in pH and pHsm

The impact of preambles to the attack gains importance espe-
cially when the anomaly detectors employ locality frame count
to delay the attacks. Although Stide can keep track of the local-
ity frame counts, pH and pHsm employ it to enforce delays on the
attacks. The locality frame count keeps track of the mismatches over
a given time period (by default, the previous 128 system calls). If
the anomalies are clustered together, this condition will produce
high locality frame counts and pH and pHsm treat this condition
as attacks. On the other hand, if the anomalies are scattered, it will
produce lower locality frame counts [30]. Based upon the observed
locality frame counts, pH and pHsm respond to attacks by slowing
down the process. The delay that pH and pHsm associate with a
system call can be expressed as:

delay_factor x 0.01 x 2LFC (1)

Higher delay _factor values produce longer process delays and
the LFC signifies how many of the past 128 system calls were
anomalous. Utilizing the Eq. (1), Fig. 13 shows the relationship
between the locality frame count values and the resulting delays
in seconds. The delays shown in Fig. 13 depends on the LFC values
hence are applicable to both pH and pHsm. If the observed local-
ity frame count increases to 120, the resulting delay will be close to

count rises above a certain value, pH effectively ‘freezes’ the attack,
hence preventing the successful execution of the exploit. This
implies that although the attack achieves a 0% anomaly rate on the
exploit component, it can still be detected and stopped by focusing
on the preamble alone.

Here we emphasize that our observations are independent of the
evasion methodology. That is to say, even though one can utilize
various other evasion attack techniques [7,6,10,11] to reduce the
anomaly rate of the exploits (or reduce it to 0%), the anomalies from
the preamble will suffice in the detection of the attack. Our analysis
indicates that evading sequence based anomaly detectors may not
be as easy as suggested by the previous work. However, an anoma-
lous preamble followed by an evasion exploit will exhibit itself as
an anomalous behavior followed by an abrupt switch to normal
behavior. Therefore, even though the exploits can be improved to
evade detection, such an abrupt transition provides an opportunity
for detecting evasion attacks. Moreover, application-attack com-
binations with short preambles - in this case traceroute — provide
most opportunity for the attacker to evade the counter measure.
In effect, the larger the contribution of the preamble, the less free-
dom there is to bias the behavioral properties of the attack towards
a normal behavioral profile.

Finally, one could argue that the preamble can also be improved.
However, it should be noted that the attacker does not have full
control of the application during the preamble, therefore an eva-
sion methodology for improving exploits cannot be applied since
the evasion methodologies generally boil down to finding system
call sequences with 0% anomaly rates. One should keep in mind that
the system calls executed during the preamble stage are the result

Table 11
Delays of the preamble and exploit components of attacks in seconds (evolved attacks compared to the original).
Preamble Exploit Attack
Traceroute application
pH Original 0.74 439 x 10% 439 x 10%
Evolved 1.11 191
pHsm Original 0.63 8.51x 10% 8.51x 10%
Evolved 1.50 x 10" 1.50 x 10™
Restore application
pH Original 1.90 x 1038 1.66 x 1039 1.85 x 1039
Evolved 9.94 1.90 x 1038
pHsm Original 1.01 x 10%° 3.93 x 10% 4.96 x 10%°
Evolved 1.11 x 10! 1.01 x 103
Samba application
pH Original 7.95 x 10%7 2.97 x 103° 3.11 x 10%°
Evolved 9.94 7.95 x 10%7
pHsm Original 1.27 x 10%0 8.96 x 1038 1.41 x 10%
Evolved 7.37 x 1012 1.27 x 10%
Ftpd application
pH Original 5.26 x 10%° 3.78 x 102 5.26 x 1030
Evolved 9.94 5.26 x 1030
pHsm Original 8.03 x 10"7 4.89 x 10% 4.89 x 10%°
Evolved 9.86 x 10'7 1.79 x 1018
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Table 12
Best exploit lengths against five anomaly detectors in terms of system calls.

Stide pH pHsm Markov Model Neural Network
Traceroute 34 118 1000 957 1000
Restore 1000 1000 999 1000 1000
Samba 1000 1000 1000 983 1000
Ftpd 11 1000 994 1000 1000

of the interaction between the attacker and the vulnerable appli-
cation. Therefore, an evasion method for improving the preambles
should model the communication between the attacker and the
vulnerable application.

5.3. Behavioral analysis of exploits

Having established the effectiveness of the arms race in Section
5, we focus on how the generated exploits evade the detectors.
The analysis detailed in this section focuses on the best exploit per
detector, application pair to investigate the affects of the applica-
tion characteristics in the resulting exploits. Specifically, the best
exploits from each population (one for each application) were
selected, where the ‘best’ was defined as the exploit with the
lowest attack (i.e. preamble + exploit) anomaly rate. The ‘best’ per-
forming exploits are discussed in terms of the system calls, which
they employ to camouflage the malicious intent. Furthermore, the
lengths of the best exploits are detailed in Table 12. Best exploits
and a discussion of Linux system calls are provided in the Appendix
B and C of Kayacik’s thesis [44].

5.3.1. Exploits evolved against Stide

The best exploit (i.e. that with the lowest attack anomaly
rate) against traceroute repeats 6 system calls in the exploit,
namely, gettimeofday sendto gettimeofday select write
write. The traceroute exploit against Stide hides its true inten-
tion within timing and I/O system calls. gettimeofday provides
the timing functionality needed to obtain the round trip time for
the traceroute packets, whereas sendto, select and write pro-
vide various I/O functions. Needless to say, all of these system calls
appear in the top 5 most frequent system calls of the application
(Fig. 7). Thus, EEG has successfully discovered that the best system
calls for obfuscation are those which are most frequently employed
by the application.

The best exploit against samba repeats a pattern, which con-
sists of a read followed by a number of _11seek system calls. read
implements a read from a resource whereas _11seek moves the
file pointer. The exploit employs this pattern as a ‘smokescreen’ in
between the open and write close system calls to evade detec-
tion. This is not surprising since _11seek and read are the mostly
utilized system calls in the system call traces, Fig. 9, whereas the
open write close sequence are necessary to define the exploit
itself.

Similarly, the best exploit against restore employs a pattern,
in which a number of write system calls precede a read system
call (again corresponding to the most frequent application system
calls). The exploit deploys this smokescreen pattern and follows up
with the attack system calls as the last three system calls.

The best exploit against ftpd is concise with 11 system calls,
Table 12, compared with the other exploits generated against Stide.
In this exploit, no repeating pattern is employed. However the
exploit employs system calls, which involve file checks such as
getcwd, fchdir and fstat along with the system calls, which
involve timing, such as alarm.

The common characteristic of the evolved exploits against Stide
[44] is that they identify and employ a set of system calls, which
were used frequently by the application during its normal opera-

tion. In the case of traceroute, the exploits repeat a certain pattern,
whereas in samba and restore, the repetition of system calls is not as
clear. On the other hand, the ftpd exploit choose to utilize fewer sys-
tem calls with no repeating patterns, which seems to indicate that
different exploit techniques exist against different applications.

5.3.2. Exploits evolved against pH

As opposed to the traceroute exploit against Stide, the best
traceroute exploit against pH does not employ any clear repeat-
ing pattern but employs different combinations of memory access
system calls, such as mmap and munmap, and file access system calls,
such as open, fstat and close, to hide the true intent.

The best exploit against pH for samba is fairly long, Table 12.
Although there are no clear repeating patterns, the strategy, which
the attack employs, is to deploy various memory access and file I/O
system calls (such as mmap2, munmap, stat) followed by a block of
fcntl164 system calls, which manipulates a given file descriptor.
This is different from the samba exploit against Stide, in which the
exploit focuses on utilizing read and _11seek system calls. In terms
of the system calls, which achieve the attack objectives, the open
and write system calls are toward the beginning of the exploit
whereas the close system call is toward the end.

The best exploit against pH for restore alternates between the
use of asingle 1seek and ablock of write system calls, where 1seek
provides random access to a file. 1seek is the third most frequent
system call in the system call traces, whereas write is the most
frequent, as shown in Fig. 8. Similarly, the restore exploit against
Stide employed write and read system calls primarily, which are
the two most frequent system calls.

Compared to the ftpd exploit against Stide, the ftpd exploit
against pH is longer and follows a different strategy and employs
combinations of read, write and close system calls whereas
the ftpd exploit against Stide is shorter and employs system calls
related to timing and file checks.

As in the exploit techniques, which EEG employed against Stide,
the exploits against pH contain system calls, which the applications
execute frequently during their normal operation [44], albeit utiliz-
ing different system calls from the attacks against Stide. Although
no clear repeating pattern exists, different combinations of the
more frequent system calls were injected between the malicious
system calls to hide the true intent of the exploit.

5.3.3. Exploits evolved against pHsm

In the best pHsm exploit on traceroute, the true intent of the
exploit is hidden between blocks of open and mmap system calls,
which handle file /O and memory mapping functions, respectively.
This trait is similar to the exploit against pH but different from the
Stide exploit, which utilizes timing system calls.

The best exploit on samba does not utilize a clear repeating
pattern but uses a combination of read, stat, munmap, mmap and
other numerous system calls. The system calls, which achieve the
attack objectives are within the first 10 system calls. Given that
the most frequent system calls are somewhat evenly distributed
for samba, the exploit utilizes a number of system calls to hide the
true intention of the code. This is a common trait shared among the
samba exploits against Stide and pH, where similar system calls are
utilized.
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Similarly, the best exploit on restore learns to hide within nor-
mal behavior by utilizing a series of write and read system calls,
which make up the 99% of the executed system calls by restore,
Fig. 8. Restore exploits against both Stide and pH utilize the same
technique to hide the true intent of the exploit.

As opposed to the concise ftpd exploits for Stide and pH, the
ftpd exploit against pHsm is comparatively long. Although there
are no clear repeating patterns, the ftpd exploit utilizes frequently
used system calls such as rt_sigaction, open, read, close, time
to formulate the padding, within which the malicious system calls
are hidden.

While employing numerous system calls, which do not appear
on exploits against Stide and pH, the exploits against pHsm fol-
low a similar technique for hiding the true intent of the exploit.
That is to say, although no repeating pattern clearly exists, the
exploits against pHsm utilize the system calls, which are used
frequently during the normal operation of the applications. This
means that, in cases where the frequency of the system call dis-
tribution is even, such as in the case of traceroute, the exploits
utilize a variation of system calls. On the other hand, if the distri-
bution is biased toward certain system calls, such as in the case of
restore, the exploits utilize a smaller set of system calls to construct
the exploits.

5.3.4. Exploits evolved against the Markov Model

The best exploit on traceroute utilizes the system calls, which
perform I/O and memory access operations such as get t imeofday,
select, write and munmap to hide the true intent of the exploit.
As in the traceroute exploit against Stide, EEG utilizes system calls
related to timing.

The best exploit on the samba application against the Markov
Model detector employs system calls involving file manipulation
such as _1lseek, stat and fcntl64 with munmap, which deal-
locates memory. Sequences _1lseek munmap stat and _llseek
munmap time are repeated in various sections of the exploit. Sim-
ilar to the samba exploits against Stide, pH and pHsm, the true
intent of the exploit is hidden within numerous types of system
calls related to I/O operations.

The best restore exploit against the Markov Model detector
shows that the exploit utilizes mainly file I/O system calls such as
open, read, write, rt_sigprocmask and 1seek. As opposed to the
restore exploits generated against Stide, pH and pHsm, this exploit
employs system calls, which occur rarely during normal operations,
such as rt_sigprocmask and 1seek. This is likely to be an effect of
the shorter sliding window size of the Markov Model. Specifically,
the longer sliding windows result in a greater number of system call
sequences to be stored in the normal database due to the fact that
longer sliding window patterns ‘detect’ more variations. Therefore,
against a smaller normal database, the search is more ‘thorough’
in the sense that rare system calls are utilized in the exploits
as well.

As in the ftpd exploits against Stide, pH and pHsm, the best ftpd
exploit against the Markov Model detector utilizes a set of system
calls performing I/O (i.e. open, read, write, close) to hide the true
intent of the exploit. Given an application, which makes frequent
open, write and close system calls, it is fairly difficult to detect
an attack without monitoring the system call parameters and the
outcome (i.e. the return values or error messages). It is important to
note that the proposed approach generates system call parameters,
but the anomaly detectors (employed in this paper) do not employ
them.

In summary, the exploits generated against the Markov Model
detector share the same traits with the exploits against Stide, pH
and pHsm mainly by employing system calls that are encountered
frequently during the normal operation of the applications. How-
ever, given that the normal database is comparatively small relative

to the above-mentioned detectors, EEG performs a more thorough
search and, in addition to the frequent system calls, employs system
calls, which are encountered seldom during the normal operation
of the applications.

5.3.5. Exploits evolved against the Neural Network

The traceroute exploit against the Neural Network utilizes sys-
tem calls, which do not appear on the other traceroute exploits such
as recvfrom, poll, brk. The recvfrom system call receives mes-
sages from a network socket whereas brk changes the data segment
size of the process and po11 provides support for multiplexing sev-
eral data streams. The use of different system calls indicates that
the exploit employs different strategies to evade different detection
methodologies.

As in the traceroute case, the samba exploit contains system
calls such as getegid32 and getsockopt, which are not uti-
lized in the other samba exploits against other detectors. The best
restore exploit against the Neural Network detector uses file I/O
system calls such as open, write, close, fstat, fcntl to hide
the true intent along with numerous rare system calls such as
chown and unlink. Unlike other exploits on restore, the read
system call is rarely employed in this exploit, which indicates
that the exploit employed a different strategy while evading the
system call frequency distribution model of the Neural Network
detector.

As with the other ftpd exploits against the other detectors, var-
ious memory and file I/O system calls were utilized with blocks
of close system calls in case of the ftpd exploit against the Neu-
ral Network detector, although there is no clear repeating pattern.
However, the ftpd exploit against the Neural Network detector
employs rare system calls as well, such as brk, which makes up
0.025% of all system calls executed during the normal operation of
the ftpd application, Fig. 10.

Since the detection methodology, which the Neural Network
utilizes looks for a match in the frequency distribution of system
calls in a trace, the exploits utilize rarely used system calls as well
as the frequently used system calls in order to match the frequency
distribution, for which the detector seeks.

5.3.6. Discussion of the exploit analysis

The analysis of the exploits indicates that the application charac-
teristics play an important role in determining the strategies that
EEG uses to evade detection. If the frequency distribution of sys-
tem calls in normal behavior is fairly even (i.e. distributed among
a number of system calls), as with traceroute, EEG aims to build
exploits, which share similar characteristics. On the other hand, if
a small subset of system calls constitutes a substantial portion of
the system calls made during normal operation, as with restore,
then EEG identifies the frequent subset and employ the system
calls accordingly. The analysis of the best exploits indicates that EEG
uses system calls related to file /O, memory allocation/deallocation
and timing to hide the true intent. In the cases of samba and ftpd,
EEG utilized system calls related to network communications as
well, which differs from the traceroute and restore exploits. This is
expected since samba and ftpd are the network-based applications
among the four employed in this paper.

It is evident that, when exploits against different detectors are
compared (on the same application), the evasion strategy is identi-
fied on a per detector basis. In other words, the system call types and
frequency distributions in the exploits vary based upon the target
detector. The common finding suggests that EEG utilizes infrequent
system calls to build exploits against the Markov Model and Neu-
ral Network detectors, whereas the exploits against the remaining
detectors generally utilize a smaller set of system calls (mainly, the
frequent system calls).
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6. Conclusion

This paper proposed an artificial arms race between anomaly
detectors and an attacker (i.e. the EEG framework) which was
implemented using Linear Genetic Programming. The main motiva-
tion for generating such evasion attacks against anomaly detectors
is to identify and eliminate detector weaknesses before the attack-
ers. The proposed arms race can be facilitated against various other
detectors as long as the detector provides a suitable detection feed-
back (i.e. similar to anomaly rates).

In this arms race, the attacker interacts with the target detector
by utilizing the detector feedback (i.e. anomaly rates and delays)
to build evasion attacks, which can evade detection while achiev-
ing the objectives of the attacker. If the attacker can deploy an
evasion attack while remaining undetected, it indicates that the
detector is susceptible to evasion attacks. Thus, the defenders can
analyze the evasion attacks and eliminate the weaknesses of the
target detector.

Our arms race experiments involved opposing our attacker
against five anomaly detectors, which monitor four vulnerable
Linux applications. Results indicate that the proposed arms race
can successfully reduce the anomaly rate of the attacks while uti-
lizing only the anomaly rate and the delays, which the detector
reports without using privileged detector information. The degree
of success depends upon various characteristics of the attack such
as the preamble length, preamble anomaly rate and the exploit
length. In other words, finding a zero anomaly rate exploit does not
necessarily imply that the attack can evade detection completely.

In particular the results in this paper demonstrate that, in prac-
tice, evading anomaly detectors can be more difficult due to the
fact that, during the break-in (i.e. the preamble phase), the attacker
does not have full control over the system calls that the vulnerable
application executes. It is only after the shellcode begins to exe-
cute (i.e. exploit phase), that the attacker can alter the system call
sequences to evade detection.

Although the evasion methodologies (introduced in this paper
and the previous work [6,7,10]) are effective in generating exploits
with zero anomaly rates, the results discussed in this paper demon-
strated that the preamble component and the transition between
the preamble and the exploit raises alarms, hence it is very diffi-
cult for an attacker to evade detection completely. For example, the
results indicate that for an ftpd exploit, which raises no alarms, the
corresponding attack still produced a 10.62% anomaly rate because
of the anomalies from the preamble.

Additionally, results demonstrate that delay associated with
locality frame counts is an effective way to stop an attack. Even
though the attack achieves low anomaly rates, it can be frozen
effectively if the anomalies are clustered together. In particular,
evasion attacks against samba have low anomaly rates yet the
delays associated with them are expressed in terms of centuries.
On the other hand, if the delays associated with locality frame
count will be employed in the real-world, reducing the false pos-
itive for the detector deserves further attention since legitimate
behavior, which is unknown to the detector can cause substantial
delays as well.

In the light of these observations, we believe that the evasion
attack research should move from focusing on the anomaly rate
alone to incorporating multiple characteristics such as the pream-
ble and exploit length, locality frame counts and associated delays.
Moreover, our future arms race efforts will employ adaptive detec-
tion methods to facilitate a co-evolutionary arms race where the
attackers are rewarded as they defeat the detectors and, similarly,
the detectors are rewarded as they adapt and ‘learn’ to detect
the evasion attacks. Such an arms race will not only allow the
defenders to identify the detector weaknesses but also enable the
detectors to generalize beyond recognizing only a single instance

of an attack hence freeing the detectors from working in a purely
reactive manner.
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