
 
Abstract

An approach to network intrusion detection is investigated, based purely on a hierarchy of Self-

Organizing Feature Maps. Our principle interest is to establish just how far such an approach can be taken

in practice. To do so, the KDD benchmark dataset from the International Knowledge Discovery and Data

Mining Tools Competition is employed. Extensive analysis is conducted in order to address the

significance of the features employed, the partitioning of training data and the complexity of the

architecture. In comparison to results reported previously using unsupervised learning, we demonstrate that

best performance is achieved using a two-layer SOM hierarchy, based on all 41-features from the KDD

dataset. Moreover, this is achieved whilst utilizing 40% of the original training data. In terms of the

contribution of different features, we recommend using ‘Protocol’ as a switching parameter for designing

modular solutions to the detection problem, where this observation is also supported by other researchers.

Index terms—Intrusion Detection Systems, Self-Organizing Feature Map.

1. Introduction

The Internet, as well as representing a revolution in the ability to exchange and communicate

information, has also provided greater opportunity for disruption and sabotage of data previously considered

secure. The study of systems able to detect network borne intrusions provides many challenges. Classical

network based approaches to this problem often rely on either rule-based misuse detection or anomaly

detection (Bass, 2000). Rule-based misuse detection systems attempt to recognize specific behaviors that

represent known forms of abuse or intrusion. On the other hand, anomaly detection attempts to recognize

abnormal user behavior. Both approaches have their respective advantages and disadvantages. Rule based
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systems typically require an exhaustive list of templates characterizing each attack instance; there is no

concept of similarity to a currently listed attack instance. The anomaly detection approach will actually

identify “normal” behaviors by mining the monitored behavior of each user so that “abnormal” behaviors

can be characterized. Clear distinctions between normal and abnormal, however, are difficult to achieve in

practice.

Given the significance of the intrusion detection problem, there have been various initiatives that

attempt to quantify the current state of the art. In particular the International Knowledge Discovery and Data

Mining Tools Competition (Hettich and Bay, 1999) provided the KDD-99 data set for assessing different

AI approaches to the problem. Although not without its drawbacks (McHugh, 2001), this benchmark

provides the only labeled dataset for comparing IDS systems, which the authors are aware of, and is

therefore utilized in this work. This enables the establishment of a clear comparison with alternative

solutions trained on the KDD dataset.

The motivation in this work lies in the desire to provide a thorough evaluation of an unsupervised

learning approach to the IDS problem. To do so, an SOM hierarchy is utilized, where the appropriateness of

such a scheme in the analysis of large datasets has already been demonstrated (e.g. WEBSOM for large

document collections (Kohonen et al., 2000)). Moreover, the initial application of SOM architectures to

IDS problems has also already been reported (Sarasamma et al., 2005) (Ramadas et al., 2004), (Kayacik et

al., 2003) (Litchodzijewski et al., 2002), (Rhodes et al., 2000). In this work the aim is to clearly establish

answers to several IDS design problems,

1. How should the training data be partitioned;

2.  May detectors based on ‘basic’ features compete with those of features constructed with a priori

knowledge;

3. Which of the ‘basic features’ in the KDD dataset are the most significant;

4. What complexity of SOM is necessary to be competitive with the best results achieved on the KDD

dataset.

In seeking answers to these questions two systems are considered: an SOM architecture in which

minimum domain knowledge is available to select applicable features and a second in which all the features

supplied in the KDD benchmark are utilized. Specific recommendations are made: (a) Domain knowledge –



6-basic features are sufficient for recognizing a wide range of denial of service attacks. 41-features are

necessary to minimize False Positive rates. (b) Architectural complexity – 2 SOM layers are sufficient when

using all 41-features, whereas 3 layers are necessary when using the 6 ‘basic’ KDD features. (c) Feature

significance – Protocol and service appear to be the most significant of the 6 basic features, where this is

(currently) indicative of the service – protocol specific nature of attacks. (d) New detector accuracies  –

Overall performance on the “Corrected (test) KDD” test set were 4.6% False positive (89% Detection) rate

with a detector based on 6-features and 1.38% False positive (90.4% Detection) rate when basing detectors

on all 41-features.

The remainder of the paper is organized as follows. Section 2 provides the background and methodology

of the work. Details of each learning algorithm comprising the system are given in Section 3. Results are

reported in Section 4 and Conclusions drawn in Section 5.

2. Methodology

As indicated in the introduction, the basic objective of this work is to assess just how far a machine

learning approach based on unsupervised learning may be taken. To this end, an approach based on

Kohonen’s topological feature maps is employed. This assumes that given sufficient resolution in the maps,

it is possible to associate different behaviors with different nodes in the feature map. Moreover, the

significance of domain knowledge in the selection of appropriate features is also of interest. A previous

work established that by utilizing a shift register to embed the temporal relationship between incoming

connections, described in terms of session information, a simple two layer SOM hierarchy was sufficient to

distinguish between different behaviors using only 6-features (Litchodzijewski et al., 2002). However, the

dataset used in that scheme only consisted of seven attacks. In this work, a thorough study is performed of

the hierarchical SOM methodology on the KDD-99 benchmark. To this end, the characteristics of the data

set are first described and then the SOM architecture utilized defined.

2.1. KDD dataset

The KDD-99 dataset is based on the 1998 DARPA initiative to provide designers of intrusion detection

systems (IDS) with a benchmark on which to evaluate different methodologies (MIT Lincoln Lab, 1998).

To do so, a simulation is made of a factitious military network consisting of three ‘target’ machines

running various operating systems and services. An additional three machines are then used to spoof



different IP addresses, thus generating traffic between different IP addresses. Finally, there is a ‘sniffer’ that

records all network traffic using the tcpdump format. The total simulated period is seven weeks. Normal

connections are created to profile that expected in a military network and attacks fall into one of five

categories: User to Root; Remote to Local; Denial of Service; Data; and Probe.

• Denial of Service (dos): Attacker tries to prevent legitimate users from using a service.

•  Remote to Local (r2l): Attacker does not have an account on the victim machine, hence tries to

gain access.

•  User to Root (u2r): Attacker has local access to the victim machine and tries to gain super user

privileges.

• Probe: Attacker tries to gain information about the target host.

Note that User to Root and Remote to Local can represent content-based attacks, and may therefore only be

detected indirectly when the detector is limited to 6 “basic features” (e.g. guessing passwords often

manifests itself as multiple attempted login’s between the same source destination pair).

In 1999 the original TCP dump files were preprocessed for utilization in the Intrusion Detection System

benchmark of the International Knowledge Discovery and Data Mining Tools Competition (Hettich and

Bay, 1999). To do so, packet information in the TCP dump file are summarized into connections.

Specifically, “a connection is a sequence of TCP packets starting and ending at some well defined times,

between which data flows from a source IP address to a target IP address under some well defined protocol”

(DARPA Archive, 1999). This process is completed using the Bro IDS (Bro, 1999), resulting in nine

“Basic features of an Individual TCP connection” (DARPA Archive, 1999); hereafter referred to as ‘basic

features’,

• Duration of the connection;

• Protocol type, such as TCP, UDP or ICMP;

• Service type, such as FTP, HTTP, Telnet;

• Status flag, derived by Bro to describe a connection;

• Total bytes sent to destination host;

• Total bytes sent to source host;

• Whether source and destination addresses are the same or not;



• Number of wrong fragments;

• Number of urgent packets;

Note that only Protocol and Service features are not derived i.e. they are estimated immediately as

opposed to after a connection has completed. Moreover, the above ‘status flag’ should not be confused with

the TCP/IP flag of the same name. Finally, the last three features are specific to certain attack types (no

variation is observed across the normal data in the training set). In line with a minimum a priori

assumption, these features are also ignored. Thus, one detector will be built using the first six basic

features, the case of minimum domain knowledge.

In addition to the above nine ‘basic features,’ each connection in the KDD dataset is also described in

terms of an additional 32 derived features, falling into three categories,

• Content Features: Domain knowledge is used to assess the payload of the original TCP packets. This

includes features such as the number of failed login attempts;

•  Time-based Traffic Features: These features are designed to capture properties that mature over a 2

second temporal window. One example of such a feature would be the number of connections to the

same host over the 2 second interval;

• Host-based Traffic Features: Utilize a historical window estimated over the number of connections –

in this case 100 – instead of time. Host based features are therefore designed to assess attacks, which

span intervals longer than 2 seconds.

In this work, the above information is considered as domain knowledge and is used to support the

second SOM architecture. The following study compares the case of two SOM architectures: one built from

the six ‘basic features’ alone (6-feature architecture) and the second from the complete set of 9 basic and 32

derived features (41-feature architecture).

2.2. Hierarchical SOM

As in our earlier work, a hierarchical SOM architecture is employed (Kayacik et al., 2003),

(Litchodzijewski et al., 2002). Such architecture is motivated by the success of other hierarchical neural

architectures, such as those used in hierarchical vector quantization (Luttrell, 1989), real time optical

character recognition (Sackinger et al., 1992) and fingerprint categorization (Halici and Ongun, 1996).

Within the context of intrusion detection, the architecture is designed to correlate network behavior across



multiple features of relevance to specific attack types with greater specificity as the hierarchy progresses

from layer 1 to layer 3, Figure 1. Moreover, such a scheme facilitates the distribution of computational

overheads in constructing such a detector. At layers 1 and 2, relatively small SOMs are utilized (6 × 6) as

training is conducted across all ‘P’ exemplars in the (training) dataset (P ≈ 500,000). SOMs in the last layer

are only constructed over the subset of exemplars for which a neuron in layer 2 is the ‘best matching unit’

(P’, P’’, etc, where all are significantly smaller than P). This means that the SOMs at the last layer can be

larger (20 × 20) than used in layers 1 and 2, thus improving the resolution hence discriminatory capacity of

the SOM, whilst still requiring less training overhead.

Fig. 1. Hierarchical SOM architecture (a) Architecture (b) Data partitioning.

As indicated in the introduction, two feature scenarios are considered, that of a system based on the 6

basic features, and that utilizing domain knowledge to build a total of 41-features. The 41-feature scenario

supports the characterization of network behavior over different time lines, the Traffic based features of

Section 2.1. In order to support the characterization of temporal behavior in the 6-feature case, a tapped

delay line of a priori depth is utilized, Figure 2. Thus, individual SOMs are associated with each of the six

basic TCP features with the objective of correlating temporal properties specific to each feature. In the case
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of the 41-feature architecture, the derived features provide a description of temporal properties of the

connections. This removes the requirement for the first layer of the hierarchy. Thus under the 41-feature

scenario, layers 2 and 3 are sufficient.

2.3. Preprocessing and Clustering

In order to build the hierarchical SOM architecture, several data normalization operations are necessary.

This provides for the initial temporal preprocessing and then inter-layer ‘quantization’ between the first and

the second layer maps. Preprocessing has two basic functions, to provide a suitable representation for the

KDD data and support the representation of time. In the case of the KDD data representation, three of the

basic features – Protocol type, Service type and Status flag – are alphanumeric. As the first SOM layer

treats each feature independently, each instance of an alphanumeric character is merely mapped to sequential

integer values. Numerical features – connection duration, total bytes sent to destination/ source host – are

used unchanged (such preprocessing is naturally also applicable for the 41-feature architecture).

In the case of a suitable temporal representation (6- feature architecture only), the standard SOM used

here has no capacity to recall histories of patterns directly. However, a previous work identified that

sequence as opposed to time stamp, is the property of most significance in the IDS problem

(Litchodzijewski et al., 2002). A shift register of length ‘l’ is therefore employed in which a ‘tap’ is taken at

a predetermined repeating interval ‘k’ such that l % k = 0, where % is the modulus operator. The first level

SOMs only receive values from the shift register that correspond to tap locations, Figure 2. Thus, as each

new connection is encountered (enters at the left), the content of each shift register location is transferred one

location (to the right), with the previous item in the lth location being lost.

Fig. 2. Tapped Delay Line of 6-feature Architecture.
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In case of the 6-feature architecture, it is necessary to ‘quantize’ the number of neurons between first and

second level SOMs. Specifically, the purpose of the second level SOM is to provide an integrated view of

the input feature specific SOMs developed in the first layer, Figure 1. There is therefore the potential for

each neuron in the second layer SOM to have an input dimension defined by the total neuron count across

all first layer SOM networks. This would be a brute force solution that does not scale computationally

(there are half a million training set patterns). Moreover, given the topological ordering provided by the

SOM, neighboring neurons will respond to similar stimuli. The topology of each first layer SOM is

therefore quantized in terms of a fixed number of neurons using a clustering algorithm, Figure 1. This

reduces the number of inputs to the second layer SOM from 216 (6 × 6 × 6) to 36 (6 × 6).

3. Learning Algorithms

Two learning algorithms are used to build the hierarchical SOM architectures. The first is used to train

each SOM in the hierarchy (Kohonen, 2000), Section 3.1. The second is a clustering algorithm that is used

to quantize the number of SOM neurons ‘perceived’ by the second layer for the 6-feature architecture alone,

Figure 1, section 3.2. In the latter case the Potential Function algorithm is employed (Chiu, 1994),

although no special significance is attributed to this particular method. Finally, in order to build SOMs

associated with the last layer of the hierarchy, a decision rule is necessary for defining under what

conditions this takes place. The scheme used in this work is summarized in Section 3.3.

3.1. Self-Organizing Feature Map

Kohonen’s Self-Organizing Feature Map (SOM) algorithm is an unsupervised learning algorithm in

which an initially ‘soft’ competition takes place between neurons to provide a topological arrangement

between neurons at convergence (Kohonen, 2000). The learning process is summarized as follows,

1. Assign random values to the network weights, wij;

2. Present an input pattern, x. In the case of the 6-feature architecture this is the series of 20 previous

connection features provided by the current shift register taps. In the case of the 41-feature architecture

this is a vector composed from the 9 ‘basic’ and 32 derived KDD features.

3.  Calculate the distance between pattern, x, and each neuron weight wj, and therefore identify the

winning neuron, or



€ 

d =min x − w j{ } (1)

where ||⋅|| is the Euclidean norm and wj is the weight vector of neuron j;

4. Adjust all weights in the neighborhood of the winning neuron, or

€ 

wij (t +1) = wij (t) +η(t)K( j, t) xi − wij (t){ } (2)

where η(t) is the learning rate at epoch t; and K(j, t) is a suitable neighborhood function;

5. Repeat steps (2) – (4) until the convergence criterion is satisfied.

Following convergence, presentation of an input vector, x, results in a corresponding output vector, d,

the Euclidian distance between each neuron and input. The neuron with the smallest distance represents the

winning or best matching unit, step (3). The best matching neuron also defines the relative position from

which the neighborhood of neurons, K(j, t), is defined. Once the maps are trained, it is this concept of a

best matching unit that is used to facilitate the labeling of the second and third level maps.

3.2. Potential Function Clustering

The Potential Function Clustering algorithm consists of four steps (Chiu, 1994),

1. Identify the potential of each data point relative to all other data points. All data points represent

candidate cluster centers;

2. Select the data point with largest potential and label as a cluster center;

3. Subtract the potential of the data point identified at step (2) from all others and remove this point from

the list of candidate cluster centers;

4. Repeat on step (2) until the end criterion is satisfied.

In this application, the set of data points correspond to the set of neurons in each (first layer) 6-feature

architecture SOM, where the weights of each neuron describe a neuron position in terms of the original

input space. Step 1 characterizes neurons in terms of how close they are to others. A neuron with many

local neighbors should have a high ‘potential’ as expressed by a suitable cost function, or

€ 

Pt (w( j)) = exp −α w(i) − w( j) 2( )
i=1
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where w(j) is the ‘j’th SOM neuron, Pt(w(j)) is the potential for such neuron at iteration t, M is the number

of data points (in this case SOM neurons), and α is the cluster radii.

Step 2 identifies a candidate cluster center (SOM neuron) by choosing the point with largest potential

Pt(x*). Step 3 removes the influence of the chosen neuron from the remaining (unselected) set of SOM

neurons. That is, the remaining neurons have their respective potentials decreased by a factor proportional to

the distance from the current cluster center, or

€ 

Pt+1(w( j)) = Pt (w( j))

€ 

−Pt (w
*)exp −β w(i) − w( j) 2( )

where t + 1 is the index of the updated potential at iteration t; w* is the data point associated with the

current cluster center, and β is the cluster radii (α < β).

The result of step 3 is the labeling of a specific SOM neuron as a cluster center. Step 4 iterates the

process in conjunction with some suitable stop criterion. In this case, stopping when six cluster centers are

identified, where the alpha and beta values are set accordingly. That is to say, further cluster centers

correspond to points with a potential value less than 10% of the first potential located. The net effect of this

process is therefore that each of the six first layer SOMs are characterized in terms of 6 SOM nodes,

resulting in a total of 36 inputs to the second level SOM.

Once the 6 cluster centers are identified for each SOM, representing the ‘quantized’ SOM output, and

normalizing as follows,

xw
y

−+
=
1

1

where w is the cluster center and x is the original input.

The second layer SOM now receives a vector, y, of the form,

y = [y1,1, …, y1,6, y2,1, …, yi,j]

where i is the SOM index and j is the cluster (neuron) index, i, j ∈ [1, …, 6].

3.3 Decision Rule for Building Last Layer SOMs

Neurons in the second layer will ideally act as the Best Matching Unit (BMU) for exemplars with the

same class label (normal, DoS, probe, U2R, R2L), thus maximizing the Detection rate and minimizing the



number of False Positives. However, there is no guarantee that this will be the case. In order to resolve

this, second layer SOM neurons that act as a BMU for exemplars from more than one class are used to

partition the data, Figure 1. Thus, third layer SOMs are trained on subsets of the original (training) data.

This enables the size of the third layer SOMs to increase, thus improving the class specificity, whilst still

presenting a reasonable computational cost as they are only trained on subsets of the original training data.

Once training is complete, second layer BMUs act to identify which exemplars are forwarded to

corresponding third layer SOMs on unseen data (test set).

A decision rule is required to determine under what conditions the classification performance of a BMU

at the second layer SOM is judged sufficiently poor for association with a third layer SOM. There are

several aspects that require consideration, including:

•  What is the local misclassification rate of the second layer BMU – relative to the number of

exemplars labeled at the second layer BMU, what is the minimum acceptable misclassification

rate;

• How many (training) exemplars does a candidate second layer BMU represent – if there are only 10

exemplars for which the second layer neuron is the BMU, association with a third layer SOM

would not be appropriate, even if the misclassification rate of the BMU was high.

To this end the following decision rule is used in this work,

IF ((min(#normal, #attack) > 1,500) AND (misclassification > 3.5%)) THEN (build third layer SOM)

Where ‘#normal’ (‘#attack’) are the count of exemplars associated with the (same) BMU and labeled as

normal (attack ∈ {DoS ∪ Probe ∪ U2R ∪ R2L}; and misclassification is the percentage of exemplars miss

classified relative to the major class label of the exemplars associated with the BMU.

The basic implication of this rule is that there must be at least 1,500 normal and attack connections

associated with a second layer BMU for training of a corresponding third layer SOM, and the rate of

misclassification over exemplars associated with the second layer BMU exceeds 3.5%.

4. Evaluation Methodology

In all cases the SOM Toolbox and SOM-PAK were employed for the design of each SOM comprising

the SOM hierarchy for either architecture (SOM-PAK). In the following, the dataset, training procedure and

evaluation of the hierarchical SOM architecture are described.



4.1. KDD-99 Dataset

The KDD-99 data consists of several components, Table 1. As in the case of the International

Knowledge Discovery and Data Mining Tools Competition, only the ‘10% KDD’ data is employed for the

purposes of training (Hettich and Bay, 1999). This contains 24 attack types and is essentially a more

concise version of the ‘Whole KDD’ dataset. One side effect of this is that it actually contains more

examples of attacks than normal connections. Moreover, the attack types are not represented equally, with

Denial-of-Service attack types – by the very nature of the attack type – accounting for the majority of the

attack instances. However, the so-called ‘Corrected (Test)’ dataset provides a dataset with a significantly

different statistical distribution than either ‘10% KDD’ or ‘Whole KDD’ and in addition includes 14 attack

types which are not encountered during training.

Table 1 : Basic Characteristics of the KDD dataset

Dataset label Total % Normal % DOS % Probe % U2R % R2L

10% KDD 494,020 19.79% 79.2% 0.8% 0.01% 0.2%

Corrected (Test) 311,029 19.58% 73.9% 1.3% 0.02% 5.2%

Whole KDD 4,898,430 19.8% 79.3% 0.84% 0.001% 0.02%

4.2. Training

Learning parameters for the SOMs are summarized in Table 2, where this process is repeated for each

SOM comprising the hierarchy. In each case, training is completed in two stages, the first providing for the

general organization of the SOM and the second for the fine-tuning of neurons. Table 3 summarizes the

additional parameters utilized by the shift register and Potential Function clustering algorithm (6-feature

architecture only). In each case, Potential Function parameters are adjusted until exactly 6 clusters are

provided for each layer one feature; Section 3.2. All 6-feature architectures utilize a shift register of 96

elements and 20 taps (l = 5).



Table 2 : SOM Training Parameters

Parameter Rough Training Fine Tuning

Initial η 0.5 0.05

η decay scheme f(epoch-1)

Epoch Limit 4,000

Neighborhood Parameters

Initial Size 2 1

Function Gaussian

Relation Hexagonal

Table 3 : Per Feature Potential Function Parameters

10% KDD

α 1×10-6, 1×10-3, 2×10-7, 1×10-6, 16×10-6, 0.1599015,

β 2×10-2, 2×10-2, 1×10-2, 4×10-2, 1×10-1, 1×10-2

Normal only

α 5×10-7, 1×10-5, 1×10-5, 1×10-5, 33×10-7, 6×10-6

β 9×10-1, 13×10-2, 7×10-2, 13×10-2, 1×10-2, 1×10-2

50 / 50

α 9×10-6, 1×10-5, 1×10-7, 1×10-5, 175×10-7, 7×10-7

β 2×10-1, 15×10-2, 7×10-2, 13×10-2, 1×10-1, 1×10-2

In the case of SOM hierarchies built from the 6 basic features a hierarchy consists of 6 SOM networks

in the first layer (temporal encoding), each consisting of 6×6 grid and 20 inputs. On completion of training

at the second layer, labeling takes place. That is, for each connection in the training set, the corresponding

label is given to the best matching unit in the second layer. A count is retained for the number of normal

and attack connections each best matching unit receives. Third layer SOMs are built for second layer SOM

neurons that demonstrate significant counts for both attack and normal connections, as per the decision rule



of Section 3.3. This results in 6 third layer SOMs being built on top of specific second layer neurons. In

each case third layer SOMs consist of 20 × 20 neurons, where a larger neuron count is utilized in the third

layer in order to increase the likelihood of separation between the two connection types. Moreover, only

connections for which the corresponding second layer SOM is the best-matching unit are used to train third

layer SOMs. This facilitates the use of larger SOMs at the third layer without experiencing a high

computational overhead. Moreover, in each case, the inputs to third level SOMs correspond to the 36-

element vector of ‘quantized’ first layer outputs.

In Section 5.3.4 SOM hierarchies are also built from all 41 KDD-99 features. In this case the first SOM

layer is dispensed with, as temporal features are explicitly supported in the feature set, Section 2.1. Thus a

single SOM trained on all 41-features is equivalent to the second layer of the SOM trained on 6 basic

features alone.

4.3. Performance Metric

Performance of the classifier is evaluated in terms of the false positive and detection rates, estimated as

follows,

Number of False Positives
False Positive Rate =

Total number of Normal Connections

Number of False Negatives
Detection Rate = 1 –

Total number of Attack Connections

Where False Positive (Negative) Rate is the number of Normal (Attack) connections labeled as Attack

(Normal).  In addition the classification accuracy on categories of attack and attack types for the more

difficult Corrected (Test) KDD dataset are considered.

5. Results

The performance of the hierarchical SOM model will be reviewed from two perspectives: features, and

hierarchy complexity. As such the study commences with the case of 6-features and a hierarchy consisting

of layers 1 and 2 alone, Section 5.1. The case is then made for selectively building layer 3 SOMs, relative

to the performance of layer 2 BMUs that ‘win’ for multiple classes, Section 5.1.2. Section 5.1.3 conducts



a study on the sensitivity of the SOM detector to each of the 6 features, making recommendations on how

further modularization of the detector would be possible. Findings on the 6-feature scenario are then

summarized in Section 5.1.4.

Performance is then evaluated under the case of 41-features, Section 5.2, first using a single SOM, and

then using a two-layer hierarchy, Sections 5.2.1 and 5.2.2 (layer 1 of the hierarchy is redundant). Finally, a

comparison is made against previous machine learning results on the KDD’99 dataset, for both solutions

based on supervised and unsupervised learning algorithms, Section 5.3.

5.1 Architectures Based on 6 basic features

5.1.1 6-features, Two layer SOM hierarchy, 3 data partitions

The 10%KDD dataset was prepared by the organizers of the original competition to provide a concise

version of the original dataset (whole KDD), Section 2.1. However, the resulting dataset is rather

unbalanced, Table 1, with the majority of the data representing attack connections. Three partitions are

therefore considered in this work: training on 10% KDD; training on the 97,277 ‘normal’ connections

alone, as taken from the 10% KDD dataset, Table 1 (i.e. an anomaly detection system), or; training on all

97,277 ‘normal’ connections and the first 97,277 attack connections. These are hereafter referred to as

‘10%KDD’, ‘Normal’, and 50 / 50 respectively.

Figure 3 summarizes the distribution of attack and normal connections in the second level SOM for the

case of training on 10% KDD; where proportionally larger counts result a greater area of the hexagon being

colored black. It is apparent that nodes 1, 32 and 36 account for most of the attack connections and neuron

19 most of the normal connections. It is also apparent that several neurons also respond to both normal and

attack connections, where the worst cases are highlighted in grey, Figure 3. Neuron labels are assigned on

the basis of the majority class count at each neuron on training data (10%KDD in all cases irrespective of

the partition used to train the architecture). Neurons responding to more than one class naturally lead to

misclassification. Disambiguation of such cases will be considered in Section 5.2 when third layer SOM

networks are selectively built for second layer neurons that respond to multiple classes. The overall result of

the labeling activity is therefore that each second layer SOM node is labeled as either attack or normal as

determined by the Best Matching Unit (BMU) count on a post training run through 10% KDD.



Figure 3. Hit histogram of the second level map (training data) – SOM hierarchy trained with 10% KDD dataset.

The above process was repeated for the case of SOM hierarchies trained under the two alternative

training set partitions: normal connections only (i.e. an anomaly detector) and 50 / 50. In each case,

labeling of the alternative architectures was naturally conducted (post training) using all the 10% KDD

training data. Table 4 summarizes performance of each architecture at the second layer on both Whole KDD

and Corrected (Test) KDD datasets. Table 5 provides an attack specific breakdown of corrected test set

performance over the three training partitions. It is now apparent that the Normal partition results in better

detection rates for Probe and R2L whereas 50 / 50 is more reliable at U2R. The 10% KDD training partition

records the best overall FP rate on account of a better performance on normal connections. Moreover, it is

also apparent that 20-30% of U2R and 10-20% of R2L attacks are correctly identified. This is interesting as

no direct support for content based features is provided in the six basic features (U2R and R2L are content

based), implying that indirect detection of content based attacks is possible. Finally, this should not be

taken as indicating that random chance would provide a better detector, as these results need to be

considered within the context of the overall detection and false positive rates, Table 4.



Table 4 : Performance of 2nd Layer SOM Under Different Training Data Partitions For Case of 6 Basic

Features – Total FP and Detection Rate

Whole KDD

Partition FP Rate (%) Detection Rate (%)

10% KDD 10.6 99.8

Normal only 15.7 99.9

50 / 50 8.25 99.8

Corrected KDD

10% KDD 7.6 90.6

Normal only 14.5 91.5

50 / 50 14.3 91.3

Table 5 : Performance of 2nd Layer SOM Under Different Training Data Partitions For Case of 6 Basic

Features – Category Specific Detection Rates Under Corrected KDD Test Data

Partition Normal DOS Probe U2R R2L

10%KDD 92.4 96.5 72.8 22.9 11.3

Normal 85.5 96.5 91 22.9 20.5

50 / 50 85.7 96.7 79.7 30 18.4

As indicated in Section 4.1, the Corrected (Test) KDD dataset used to evaluate the performance of

detectors contains an additional 14 attack types not included in the training data (10% KDD). Tables 6 and

7 detail the ability of the second layer of the three respective systems to detect attack types available and

unavailable in the training data set. Moreover, Tables 6 and 7 detail the total number of instances of each

attack type. In the following observations the contribution from attacks with less than a 100 exemplars is

therefore discounted i.e., no information regarding risk (significance) is available to bias the development of

the detector towards the identification of such infrequent exemplars (as in the case of sufficient a priori

knowledge to design a suitable weighted cost function).



Table 6 : Attack Specific Detection Rates at the 2nd Layer Under Each Training Data Partition – Previously

Encountered Attack Types; Corrected KDD Dataset

Attack Name

(# exemplars)
Category 10%KDD Normal 50 / 50

Back (1098) Dos 50.9% 7.2% 52.0%

Land (9) Dos 100.0% 100.0% 100.0%

Neptune (58001) Dos 96.4% 97.4% 96.9%

Pod (87) Dos 6.9% 60.9% 4.6%

Smurf (164091) Dos 99.9% 100.0% 99.8%

Teardrop (12) Dos 16.7% 16.7% 25.0%

Ipsweep (306) probe 25.5% 83.0% 25.2%

Nmap (84) probe 40.5% 95.2% 85.7%

Portsweep (354) probe 52.0% 93.8% 84.7%

Satan (1633) probe 73.7% 88.0% 76.6%

ftp_write (3) r2l 0.0% 0.0% 33.3%

guess_passwd (4367) r2l 7.9% 16.7% 13.4%

Imap (1) r2l 0.0% 100.0% 100.0%

Multihop (18) r2l 0.0% 16.7% 0.0%

Phf (2) r2l 0.0% 50.0% 50.0%

Snmpguess (2406) r2l 3.2% 5.5% 7.5%

Warezmaster (1602) r2l 27.3% 34.1% 34.5%

Worm (2) r2l 50.0% 50.0% 50.0%

buffer_overflow (22) u2r 13.6% 18.2% 22.7%

Loadmodule (2) u2r 0.0% 0.0% 0.0%

Perl (2) u2r 0.0% 0.0% 50.0%

Rootkit (13) u2r 69.2% 53.8% 61.5%

Sqlattack (2) u2r 50.0% 50.0% 50.0%



Table 7 : Attack Specific Detection Rates at the 2nd Layer Under Each Training Data Partition – Not

Previously Encountered Attack Types; Corrected KDD Dataset

Attack Name

(# exemplars)
Category 10%KDD Normal 50 / 50

apache2 (794) dos 90.3% 29.2% 96.0%

Mailbomb (5000) dos 7.8% 8.0% 8.0%

Processtable (759) dos 59.4% 77.2% 71.9%

Udpstorm (2) dos 0.0% 0.0% 0.0%

Mscan (1053) probe 90.2% 92.3% 91.7%

Saint (736) probe 79.1% 97.4% 89.1%

Httptunnel (158) r2l 58.9% 88.6% 71.5%

Named (17) r2l 23.5% 41.2% 35.3%

Sendmail (17) r2l 5.9% 29.4% 11.8%

Snmpgetattack

(7718)
r2l 11.5% 23.0% 20.1%

Xlock (9) r2l 0.0% 11.1% 11.1%

Xsnoop (4) r2l 0.0% 0.0% 0.0%

Ps (16) u2r 0.0% 0.0% 6.3%

Xterm (13) u2r 23.1% 30.8% 38.5%

It is first noted that the attacks with the largest number of exemplars are consistently identified,

independent of training partition e.g. Neptune, Smurf (DoS). However, it is interesting to note that the

SOM trained with the complete 10% KDD partition does not necessarily result in the best detector for

attack types with hundreds to thousands of exemplars  (e.g. Ipsweep, Portsweep or Processtable). Moreover,

in the case of the probe attack category the SOM trained as an anomaly detector (normal) consistently

performs better than either of the other detectors on both seen or unseen attacks. For R2L the detector

trained with 10%KDD is consistently the worst (on either seen or unseen attack types), whereas under U2R

the low number of exemplars results in all systems performing equally bad.



5.1.2 6 basic features, three layer SOM hierarchy

Partitioning of the training data clearly has an impact on the quality of the detector, where this is not a

particularly desirable result, given the complexity of the ensuing combined detector and the uncertainly in a

priori selection of the best data partition. In the following, the case of adding a third layer to the SOM

hierarchy is considered whilst training on the 50 / 50 and 10% KDD training data partitions (best overall

FP and Detection rates on whole KDD and Corrected KDD respectively).

From Figure 3 it is apparent that nodes 1, 32 and 36 of the second layer SOM (10% KDD training data

partition) account for most of the attack connections and neuron 19 most of the normal connections. It is

also apparent that several neurons respond to both normal and attack connections. To this end neurons 4,

17, 18, 23, 30 and 36 are selected for association with third level SOMs, one for each second layer neuron,

as per the decision rule of section 3.3. On completion of training at the third level maps, a clear separation

between normal and attack was achieved. Figure 4 illustrates this property for the case of neuron 36. In this

case, it is apparent that the normal connections all reside in the top left corner of the map, whereas the

attack connections populate the remainder.

Figure 4. Third level map associated neuron 36 of the second level map – 10%KDD Training Data Partition.



Table 8 details test set performance for the case of the 6-feature three layer SOM hierarchies on

‘Corrected (Test)’ KDD and ‘whole KDD’ datasets. Moreover, Table 9 details the performance of the three-

layer hierarchies on ‘Corrected (Test) KDD’ set for different attack categories, whereas the performance on

new attacks in ‘Corrected (Test) KDD’ is detailed in Table 10. Corresponding results for the two-layer

architectures are given in Tables 4, 5 and 7. The common thread through these results is an underlying

improvement to the false positive rate at the expense of a decrease in the detection rate, Table 8 and 4.

Specifically, the addition of the third level results in an improvement or no change to the most frequent

exemplar classes – Normal and DoS – at the expense of the remaining attack categories and unseen attacks;

compare Tables 9 and 5 or 10 and 7. Moreover, the improved results reported by the three-layer architecture

on “Whole KDD” relative to those for “Corrected KDD” appear to indicate that the detector is becoming too

specific, Tables 8 and 4.

Table  8 : Comparative  Test Results For 3-layer Hierarchy

Whole KDD

Partition FP Rate (%) Detection Rate (%)

10% KDD 1.75 99.7

50 / 50 2.6 99.1

Corrected Test

10% KDD 4.6 89.0

50 / 50 10.9 88.6

Table 9 : Category Specific Detection Rates For 3-layer Hierarchy – Corrected (Test) Dataset

Hierarchy Level Normal DoS Probe U2R R2L

10% KDD 95.4 95.1 64.3 10.0 9.9

50 / 50 89.1 93.4 76.7 24.6 20



Table 10 : Attack Specific Detection Rates For 3 Layer Hierarchies – Not Previously Encountered Attack

Types in Corrected KDD Dataset

Attack
Number of

Exemplars
Category 10% KDD 50 / 50

apache2 794 dos 90.7 91.9

Mailbomb 5000 dos 6.8 7.8

Processtable 759 dos 47.6 54.7

Udpstorm 2 dos 0.0 0.0

Mscan 1053 probe 60.9 81.4

Saint 736 probe 78.7 86.4

Httptunnel 158 r2l 20.9 25.3

Named 17 r2l 0.0 58.8

Sendmail 17 r2l 11.8 17.6

Snmpgetattack 7741 r2l 10.3 27.7

Xlock 9 r2l 0.0 22.2

Xsnoop 4 r2l 0.0 25

Ps 16 u2r 0.0 18.75

Xterm 13 u2r 30.8 23.1

5.1.3 Sensitivity analysis for the case of 6 basic features

The 9 basic features utilized in the KDD Competition are derived from the original DARPA tcpdump

file using the ‘Bro’ network analyzer (Bro, 1999). Historically very little has been done to identify the

significance or contribution of these basic features to the performance of the ensuing IDSs. In this work

only six of the nine features are employed, as three of the original nine features are actually invariant over

the 10% KDD training dataset, Section 2.1. In order to quantify the contribution of each of the remaining

six basic features, a ‘leave-one-out’ methodology is adopted. Specifically, six-second layer SOMs are

trained on the 10%KDD training data, each with a different combination of the five basic features i.e., 5

rather than all 6 layer 1 SOMs are utilized. Performance on the corrected KDD test set is then compared

with that from the second layer detector trained with all six basic features.



Table 11 details the False Positive and Detection rates over the corrected KDD test set for the six

versions of the 5-feature system, with the corresponding full (6-feature) detector identified in Section 5.1.3

(all systems trained on the 10% KDD training data partition). It is apparent that either the detection or false

positive rates decrease whenever one of the six features is removed, indicating that all features contribute to

detection. It is interesting to note, however, that only when the protocol feature is dropped does the False

Positive and Detection rate increase. All other features result in a decrease to both false positive and

detection rates. In addition, a student paired two-tailed T-test is made for the hypothesis that the

classification counts for each attack remain the same, Table 11. All are independent from the 6-feature

baseline at the 95% confidence interval (99% for all but Protocol, where Protocol resulted in the least

change to Detection rate).

Table 11 : Comparison of 2-Layer 5-Feature SOM Detectors with 2-Layer 6-Feature SOM On Corrected

KDD Test – 10% KDD Training Data

Excluded feature FP Rate

(%)

Detection

Rate (%)

T-Test

(%)

None (Baseline) 7.6 90.6 N/a

Duration 2.3 89 0.02

Protocol 44.1 91.2 4.2

Service 0.9 87.1 0.001

Flag 2.8 88.3 0.003

Source Bytes 1.5 88.3 0.0017

Destination Bytes 1.4 88.3 0.0017

5.1.4 Summary of Architectures Utilizing 6-features

When using 6 basic features, the resulting detector is capable of detecting over 95% of normal and DoS

connections when using the standard training distribution. Detection of the probe category is better when

using the 50/50 partition. This appears to be a natural reflection of the frequency with which connection

types are represented in the training data. The SOM algorithm will allocate BMUs in accordance with the

frequency with which behaviors appear. Reducing the frequency of the DoS class results in a better

detection of probe, at the expense of the larger classes (normal and DoS).



Of the six basic features, protocol appears to be the most significant, where a natural extension might

be to filter and associate connections with different detectors on the basis of this parameter. Finally, the

three layer SOM appears to improve FP rate at the expense of Detection, relative to the two layer SOM

architecture.

5.2 Architectures based on 41 KDD features

5.2.1 41-features, Single SOM

In this section SOM detectors are built when domain knowledge is used to construct relevant features.

To this end, a single SOM is built in which the input is the 41 KDD features and compared against the

corresponding two layer 6-feature SOM hierarchy. The 41-feature case naturally does not require Potential

Function clustering as the new feature set makes the first layer maps redundant. The same neuron count (36)

for the case of the 41-feature single layer SOM is retained.

Table 12 summarizes performance for the 41-feature SOM with a single layer (equivalent to layer 2 of

the 6-feature model) on Corrected KDD and Whole KDD test data sets. Table 4 provides the corresponding

results under the 6-feature hierarchy.  It is immediately apparent that the false positive rates for 41-feature

SOM under 10% KDD and 50 / 50 partitions are much tighter than that under the six-feature architecture.

Table 12 : Performance of Single Layer SOM Under Different Training Data Partitions For Case of All 41

Features – Total FP and Detection Rate

Whole KDD

Partition FP Rate (%) Detection Rate (%)

10% KDD 0.67 99.69

Normal only 14.45 99.73

50 / 50 0.29 99.62

Corrected Test

10% KDD 1.53 89.92

Normal only 27.16 94.0

50 / 50 1.4 90.14



In order to identify the source for this improvement, performance under different attack categories are

compared, Table 13 versus Table 5 for the 6-feature architecture. The most striking difference between the

two systems is the stronger performance by the 41-feature architecture on ‘Normal’. However, the better

performance on Normal (and DoS) is achieved at the expense of the Probe category for the architecture

trained on the 10% KDD partition. In addition, the 50 / 50 partition is now clearly much more competitive

(with 10%KDD) than was the case under the 6-feature scheme. In particular, the 50 / 50 partition now

provides the best case FP and Detection rates, Table 12, where this appears to be manifest in better

detection of the ‘probe’ attack category, Table 13. This also naturally results in the additional advantage of a

faster training time; the 50 / 50 partition is 61% smaller than the 10%KDD partition.

Table 13 : Performance of Single Layer SOM Under Different Training Data Partitions For Case of 41

Features – Category Specific Detection Rates Under Corrected Test

Partition Normal DOS Probe U2R R2L

10%KDD 98.5 96.8 63.4 0 0.15

Normal 72.8 96.6 70.6 11.4 64

50 / 50 98.6 96.8 75.4 0 1

5.2.2 41-features, Two layer SOM hierarchy

As in the case of the three layer 6-feature architecture, additional neuron specific SOMs may be added to

the 41-feature case. Table 14 details the corresponding False Positive and Detection Rates after expanding

the 6 layer 1 neurons with the highest misclassification rates in the case of the two best training partitions

(10% KDD and 50 / 50). The superiority of the 50 / 50 partition is emphasized, as results continue to

improve whereas those for 10% KDD actually get worse in some cases. This is most probably an artifact of

the 10% KDD dataset being dominated by DoS attack type. In effect the SOM dedicates most resources to

representing the DoS distribution, at the expense of the other connection categories.



Table 14 : Performance of Dual Layer SOM Under Different Training Data Partitions For Case of All 41

Features – Total FP and Detection Rate

Partition FP Detect Normal DOS Probe U2R R2L

10%KDD 1.57 90.6 98.4 96.9 67.6 15.7 7.3

50 / 50 1.38 90.4 98.6 96.9 81.3 0 1.1

The final comparison made is in terms of classification rates on the most frequently seen and unseen

attacks for 6 and 41-feature architectures. In this case the difference between the classification counts for the

two architectures is plotted for all attack types with more than 100 exemplars (Tables 6 and 7 summarize

the number of exemplars per attack type). Figure 5 details the case for 2 layer architectures and Figure 6 the

3 layer architecture under the 50 / 50 training data partition (similar observations are true for the case of the

10%KDD partition). Positive (Negative) differences indicate that the 41-feature architecture has a higher

classification count relative to the 6-feature (41-feature) case. It is evident that the 6-feature case tends to

provide better performance over a wider range of attacks. However, the 41-feature case performs better on the

majority of the higher frequency seen attack types (e.g. Neptume, Smurf and Portsweep), thus resulting in

better overall False Positive and Detection rates. Moreover, the 41-feature case benefits more when

additional node specific SOMs are built.
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Figure 5. Percent difference on frequent attack types – 2 layer 41-feature versus 6-feature.
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Figure 6. Percent difference on frequent attack types – 3 layer 41-feature versus 6-feature.

5.2.3 Summary of Architectures utilizing 41-features

Utilizing all 41-features results in incremental improvements to the detection of Normal and DOS

categories, whilst significantly advancing performance under Probe. However, this is only true for the

50/50 partition; training on all training data results in little benefit relative to the performance achieved

using 6-features alone. Moreover, a wider range of attack types were still recognized by the 6-feature

architecture, with most performance gains in the 41-feature case coming from better Detection rates on the

more frequently represented classes.

5.3 Previous Approaches to the KDD-99 Dataset

Table 15 provides a summary of some recent results from alternative approaches based on unsupervised

learning algorithms. In all cases training was conducted using the KDD-99 dataset and tested using the

‘Corrected (Test)’ data (Esking et al., 2002), (Lee, Stolfo and Mok 1999). Results for the alternative

schemes fall over the interval 2-10% for False Positives and 70-98% on Detection. This is competitive with

the 3 layer 6-feature SOM architecture i.e. a False Positive rate of 4.6% and a Detection rate of 89%.

However, there are several additional factors with which these results need to be interpreted. In the case of

(Esking et al., 2002), figures quoted are for a mixture of specific and multiple attack types, making it

difficult to determine performance over the entire dataset. Moreover, use was also made of Host based

information, thus providing an advantage when detecting content based attacks (Esking et al., 2002). None

of the results approach that achieved here using a 2 layer SOM based on all 41-features.



Table 15 : Recent Results on Corrected (Test) KDD using Alternative Clustering Algorithms

Technique Detection Rate FP Rate

Data-Mining (Lee, Stolfo and Mok 1999) 70-90% 2%

Clustering (Esking et al., 2002) 93% 10%

K-NN (Esking et al., 2002) 91% 8%

SVM (Esking et al., 2002) 98% 10%

Table 16 details the top two winning entries from the original Data Mining competition (Elkan, 2000).

These are both trained using supervised learning and make use of hundreds of decision trees, utilize all 41-

features, divide the training dataset into multiple partitions (Levin, 2000) (or utilize bagged-boosting

(Pfahringer, 2000)) and require unique hand crafted optimization criteria. Performance on the most

frequently occurring classes are very similar (Normal and DoS are within 1% of each other), however, the

supervised schemes differentiate themselves on the less frequent classes. The overall effect of this is a False

Positive rate which is three times smaller than that provided by the 2-layer 41-feature SOM (0.5% versus

1.4%).

Table 16 : Winning Kdd Competition Supervised Classifier  Results on Corrected (Test) Kdd Dataset

Model Normal DOS Probe U2R R2L Detection FP

(Pfahringer, 2000) 99.5 97.1 83.3 13.2 8.4 90.9 0.45

(Levin, 2000) 99.4 97.47 84.5 11.54 7.32 91.5 0.58

As indicated in the introduction, several SOM based anomaly and misuse models have been proposed.

Several authors have suggested using a priori knowledge to build SOM models for specific protocol –

service combinations (Ramadas et al., 2003), (Rhodes et al., 2000), however, both works report results on

proprietary datasets making comparison impossible. With regards to alternative SOM architectures applied

to the KDD’99 dataset, Sarasamma et al. design a three layer SOM hierarchy in which different feature

subsets are utilized at each level in the hierarchy (Sarasamma et al. 2005). As in our work, higher layer

SOMs are built selectively, depending on the consistency of performance of BMUs at lower layers. The

principle difference lies in the use of a priori knowledge to specify feature subsets utilized at each layer of

the hierarchy. Such a scheme returns Detection rates in the region of 90.94 – 93.46% and False Positive



rates of 2.19 – 3.99% (depending on the number of neurons used at each SOM layer); as compared to the

work reported here in which a two (three) layer SOM hierarchy based on all 41 (6 basic) features returns a

Detection rate of 90.4% (89%) and False Positive rate of 1.38% (4.6%). Hence, using a priori knowledge

to select subsets of features over a 3 layer architecture at each layer is not able to improve on the

performance of a 2 layer architecture based on all 41 features, however, such a scheme does half the False

Positive rate of a system limited to the 6 basic features alone.

6. Conclusion

An unsupervised learning approach to the IDS problem is investigated and demonstrated on the

International Knowledge Discovery and Data Mining Tools Competition intrusion detection benchmark

(Hettich and Bay, 1999). To do so a hierarchical SOM architecture is investigated under two basic feature

sets, one is limited to 6 basic features whereas the other contains all ’41-features’. The significance of five

basic design decisions are considered and commented on as follows:

Training Partition – The original partition, denoted 10%KDD, is considered alongside the case of an

anomaly detector (10% KDD with all attack exemplars removed) and 50 / 50, in which the number of attack

and normal exemplars is balanced. Given that the original ‘10%KDD’ is highly unbalanced, it is natural

that this partition also contains the most exemplars. This both increases training time and is eventually

observed to bias the resulting detector towards the two largest categories of Normal and DoS.

Hierarchy – Both the 2-layer 6-feature hierarchy and 1-layer 41-feature hierarchy benefit from the

provision of additional “node specific” SOMs. Such a scheme appears to result in the natural division of

attack and normal exemplars. However, the 41-feature architecture appears to benefit most, where this

naturally indicates that the 41-feature architecture results in a more discriminant feature space than the 36

features derived from the level one SOMs of the 6-feature architecture. Thus, in this case domain knowledge

provides most advantage.

Basic Feature Significance – Of the six basic features, protocol is the only feature to result in increases

of False Positive and Detection rates. Dropping any of the other five features resulted in detectors providing

lower False Positive and Detection rates. This appears to indicate that detectors should actually be built

with respect to protocol and service (best case False Positive rate), where this reflects the a priori

knowledge that attacks are (currently) specific to both. Moreover, such a scheme would result in a modular



detector architecture that facilitates incremental updates much easier than the current (machine learning)

norm of single detectors (Remadas et al., 2003).

41-Feature Architecture  – The combination of all 41-features with two SOM layers (equivalent to 3-

layers of the 6-feature scheme) resulted in the best-case performance. Moreover, a definite preference for the

‘balanced’ 50 / 50 training partition was demonstrated. The resulting False Positive and Detection rates

were 1.38% and 90.4% respectively.

Previous KDD detectors – In comparison to past best case supervised learning solutions, the

(unsupervised) solutions identified here have a False Positive rate three times higher on the Corrected (test)

KDD dataset (1.38% versus 0.45%), but similar Detection rates (90.4% versus 90.9%). We believe the

principle reason for this to be in terms of the availability of suitable ‘boosting’ algorithms for unsupervised

learning, as opposed to the supervised learning methodology itself.

It is anticipated that future work will investigate the utilization of a boosting scheme within the context

of a distributed solution to the IDS problem. Moreover, several algorithms for incrementally ‘growing’

SOM type architectures have been proposed and demonstrated to be appropriate for data mining type tasks

(Rauber et al., 2002). It would therefore be of interest to consider such systems for IDS type tasks.
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