
Noname manuscript No.
(will be inserted by the editor)

Evolutionary Computation as an Artificial Attacker
Generating Evasion Attacks for Detector Vulnerability Testing

Hilmi Güneş Kayacık · A. Nur Zincir-Heywood · Malcolm I. Heywood

Received: date / Accepted: date

Abstract Intrusion detection systems protect our in-
frastructures by monitoring for signs of intrusions. How-

ever, intrusion detection systems are themselves suscep-

tible to vulnerabilities, which the attackers take advan-

tage of to evade detection. In particular, we focus on
evasion attacks in which the attacker aims to generate

a stealthy attack that eliminates or minimizes the likeli-

hood of detection. Attackers achieve stealth by mimick-

ing normal behaviour while achieving the attack goals,

hence bypassing the detector. Previous work focused on
generating evasion attacks using the internal knowledge

of the detectors, hence adopting a ‘white-box’ access to

the detector. On the other hand, we adopt a ‘black-box’

approach and propose an evolutionary attacker based
on Genetic Programming. The access of our ‘black-box’

approach is limited to the feedback of the detector such

as anomaly rates and delays. We compare our ‘black-

box’ approach with various ‘white-box’ approaches to

investigate its effectiveness. In doing so, the impact of
anomalies from the break-in stage of the attacks and the

delays based on locality frame counts are also discussed.

This is particularly important if the performance com-

parison is to reflect the real capabilities of detectors.

H. G. Kayacık
Carleton University, School of Computer Science, 1125 Colonel
By Drive, Ottawa ON K1S 5B6, Canada E-mail: kay-
acik@ccsl.carleton.ca

A. N. Zincir-Heywood
Dalhousie University, Faculty of Computer Science, 6050 Uni-
versity Avenue, Halifax NS B3H 1W5, Canada E-mail: zin-
cir@cs.dal.ca

M. I. Heywood
Dalhousie University, Faculty of Computer Science, 6050 Uni-
versity Avenue, Halifax NS B3H 1W5, Canada E-mail: mhey-
wood@cs.dal.ca

Keywords Computer security · intrusion detection ·

anomaly detection · evasion attacks · evolutionary

computation · artificial arms race

1 Introduction

Buffer overflows are the result of software deficiencies
due to improper handling of memory, inputs or outputs.

For attackers, buffer overflows represent an important

potential weakness that may lead to a wide range of out-

comes e.g., vandalism, fraud, identity and intellectual
property theft. While software testing provides a valu-

able technique for identifying and eliminating the de-

ficiencies causing buffer overflows, it cannot guarantee

that all the existing deficiencies are eliminated. There-

fore, it is important to deploy intrusion detection sys-
tems to prevent attackers from exploiting the unknown

deficiencies.

Intrusion detection systems provide a means to de-
tect buffer overflow attacks either in transit on the net-

work or during run-time on the host. Different detection

techniques can be employed to search for the evidence of

intrusions. To this end, two main categories exist: mis-
use and anomaly detection. Misuse detectors employ

attack signatures whereas anomaly detectors adopt the

opposite approach and utilize normal behaviour models

to detect intrusions. Misuse detectors are very effective

against the known attacks for which a signature exists
but their detection capabilities are limited to the signa-

tures they have. Anomaly detectors, on the other hand,

are effective against the unknown attacks as long as the

attack behaviour sufficiently deviates from the normal
behaviour model. However, retraining may be necessary

to ensure the effective detection and low false positive

rates.

kayacik
Text Box
Preprint Version

2

Naturally, intrusion detection systems, just like

other systems, are not infallible. In addition to gen-

eral software deficiencies and misconfigurations, they

are also susceptible to detector specific vulnerabilities

such as blind spots or deficiencies in detection tech-
niques. Sophisticated attackers can take advantage of

these vulnerabilities to evade detection, hence render-

ing the detectors ineffective. Thus, detector testing is

crucial for identifying and eliminating detector weak-
nesses before the attackers can exploit them. Vulner-

ability testing can be considered as ethical hacking,

where the objective is to establish the limitations of

the detection methodologies. Identifying the limitations

can allow us to make better decisions on the design of
defences that protect the networks and the connected

hosts.

This work focuses on the vulnerability testing of

host-based anomaly detectors by generating evasion at-
tacks. In a typical evasion attack, the attacker aims to

alter a generic attack template – the core of an attack

– so that the evasion attack ‘mimics’ normal behaviour

to evade detection. If an attacker can generate an eva-

sion attack, which produces zero or low anomaly rates,
it can evade the detector in question. While several

researchers [35] [32] [24] identified several evasion at-

tacks against host-based anomaly detectors, the com-

mon trait is to use a ‘white-box’ methodology, which
assumes that the attacker has full access to the detec-

tor and its normal behaviour database. In this work,

we take an alternative ‘black-box’ approach to investi-

gate whether an attacker can generate effective evasion

attacks without access to the internal knowledge of the
detector. To do so, we propose an Evolutionary Exploit

Generator (EEG), which interacts with the anomaly

detectors purely through the detector outputs such as

the reported anomaly rates. The main objective of this
paper is to provide a comparison between ‘white-box’

and ‘black-box’ detector testing techniques, thus estab-

lish to what degree the ‘black-box’ limitation constrains

our ability to detect detector limitations. Our results

demonstrate that the Evolutionary Exploit Generator
assuming a ‘black-box’ access to the detector is as ef-

fective as the techniques assuming a ‘white-box’ access.

Furthermore, the results suggest that the break-in stage

of the attack is crucial in determining the anomaly rate
of the overall attack, hence even though the attacker

can design a ‘stealthy’ exploit, an anomalous break-in

stage can cause the attack to be detected.

The remainder of the paper is organized as follows.

The relevant work on the vulnerability analysis of host-
based anomaly detection is provided in Section 2. The

anomaly detectors employed in our experiments and

the vulnerable applications are detailed in Section 3.

Section 4 provides the discussion of the proposed Evo-

lutionary Exploit Generator, which assumes a ‘black-

box’ access to the detector. Section 5 discusses various

‘white-box’ testing techniques which employ the inter-

nal knowledge of the detectors such as the normal be-
haviour database to generate evasion attacks. Perfor-

mance comparisons of the ‘black-box’ and ‘white-box’

methods are made in Section 6. Conclusions are drawn

in Section 7.

2 Relevant Work

Earlier works in vulnerability analysis make extensive

use of knowledge regarding the internal design of the
detector, with the emphasis being directed purely at

the exploit. Wagner et al. [35] investigated an approach

to alter the system call sequences of an attack in or-

der to render it undetectable to a specific IDS, namely

Stide. Given a minimum sequence of malicious system
calls to support execution of a successful attack – the

core attack – their goal was to find other sequences of

system calls that avoid detection by the target IDS yet

still achieve the objective of the core attack. This was
achieved by manually adding system calls that have no

effect on the success of the attack. Similarly, Tan et al.

[32] aimed to undermine the anomaly based IDS Stide

[11] by identifying weaknesses and modifying the mali-

cious system call sequences to exploit these limitations.
To do so, they first modified the attack by hand to

change the ownership of a critical file. Secondly, they in-

serted system calls from the data characterizing normal

behaviour into the malicious system call sequence. Vi-
gna et al. [34] described a methodology to generate vari-

ations of an attack to test the quality of detection signa-

tures of Snort. Stochastic modification of attack code

was employed to generate variants of attacks to ren-

der the attack undetectable. Techniques such as packet
splitting, evasion and polymorphic shellcode were dis-

cussed. Kruegel et al. [24] developed a static analysis

tool for Intel x86 binaries in order to automatically

identify instructions that can be used to redirect con-
trol flow. They used symbolic execution to achieve this.

Giffin et al. generated evasion attacks against Stide by

applying automatic model checking to prove that no

reachable operating system configuration corresponds

to the effect of an attack [14]. However, in their ap-
proach, the operating system model, application (pro-

gram) model and system call specifications as well as

the attack configuration were still generated manually.

On the other hand, our work contributes to the ex-
isting work on evasion attacks in two ways. Firstly,

our approach represents an arms race between vari-

ous anomaly detectors and a ‘black-box’ attacker i.e.,

3

the Evolutionary Exploit Generator (EEG) framework.

The arms race is designed to reward the attacker as it

demonstrates measurable features that are potential in-

dicators of an effective attack. Such features may take

the form of minimizing anomaly rates or the minimiza-
tion of dynamic counter measures deployed against an

attack by the detector e.g., delays. Consequently, the

EEG attacker utilizes the information feedback from

the detector to build evasion attacks that achieve the
objectives of the attacker while minimizing detection

from the target detector. No internal knowledge of the

detector is required to facilitate the arms race, instead

all the feedback is based on behavioural information

publicly available to the user of the target detector.
The main result of the arms race is a set of evasion

attacks, which can evade the target detector (or not).

The resulting attacks provide the defenders with cru-

cial information that can be utilized to guide attempts
to eliminate weaknesses of the target detector. Needless

to say, the exploits produced are entirely a result of the

EEG with no hand crafting of the exploits.

Second, the previous work [35] [33] [32] [12] [24] [14]
assumed that either (1) at the break-in stage, attackers

can gain control of the vulnerable application without

raising alarms, or (2) attackers have already gained con-

trol of the victim system. Although the attackers can

alter their exploit after gaining full control, no consid-
eration was given as to whether the combination of the

break-in and exploit would increase the anomaly rate.

In this work, we call the break-in stage, during which

the attacker tries to gain control of the vulnerable appli-
cation, the preamble. After the attacker gains control of

the application, he/she injects a payload, which is called

the exploit, to carry out the attack objectives such as

spawning a UNIX shell. Therefore, attacks are com-

prised of two components: the preamble and the exploit.
Thus, in this work, the anomaly rate is calculated not

only on the exploit but also on the entire attack, which

contains the anomalies from the preamble. As such, the

performance evaluation reflects the ability of the detec-
tor to detect attacks as a whole (as would be the case in

practice) as opposed to limiting evaluation to detecting

the exploit alone; the latter biasing the evaluation in

favour of the attacker and giving a misleading impres-

sion of detector vulnerability to exploits. It is therefore
acknowledged that evasion attacks against anomaly de-

tectors may not be as easy to perform in practice due

to the attacker’s lack of control over the system calls

executed before the attacker’s shellcode is invoked. In-
deed, it readily becomes apparent that only when the

preamble component of an attack contributes a signifi-

cantly lower proportion of the attack code, it is possible

to evade the more sophisticated detectors (as discussed

in Section 6).

3 Vulnerable Applications and Candidate

Detectors

In this section, we introduce the set of vulnerable ap-

plications used in our benchmarking study and estab-

lish the application specific instruction set employed by

EEG for evolving exploits. The set of detectors, against

which vulnerability testing is carried out, is then es-
tablished where we provide a cross-section of detector

complexity as well as covering different families of de-

tector architecture.

3.1 Vulnerabilities

In our experiments, four Linux vulnerabilities are em-

ployed: traceroute, samba, restore and ftpd, all of which

have known and documented vulnerabilities.1 These

are also the vulnerable applications most frequently
used in the vulnerability testing literature [35] [32] [33].

The traceroute and restore vulnerabilities can be ex-

ploited locally whereas ftpd and samba vulnerabilities

can be exploited remotely. As established by the pre-

vious work, vulnerable applications are executed under
different scenarios to establish the normal behaviour for

each application [35] [32] [33] [21].

The attacks against the four Linux applications are

buffer overflow attacks, where the attackers take advan-

tage of the vulnerabilities to inject their malicious code.
In a typical buffer overflow attack, the attacker injects

more data than the vulnerable variable can hold, hence

causing the excess data to spill into the unallocated

memory space or into other allocated variables. The
main goal of a buffer overflow attack is to overwrite the

system state information stored in the memory and con-

sequently divert the execution to the attacker’s code.

3.1.1 Traceroute Configuration

Traceroute is a network diagnosis tool, which is used

to determine the routing path between a source and a

destination by sending a set of control packets to the

destination with increasing time-to-live values. A typi-

cal use of traceroute involves providing the destination
IP, whereas the application returns information on the

route taken between source and destination. Red Hat

6.2 is shipped with traceroute version 1.4a5, where this

1 See Security Focus Vulnerability archives http://www.

securityfocus.com

4

is susceptible to a local buffer overflow exploit that pro-

vides a local user with super-user access [1]. The attack

takes advantage of the vulnerability in malloc chunk,

and then uses a debugger to determine the correct re-

turn address to take control of the program. In order
to establish traceroute behaviour under normal condi-

tions, traceroute is executed by supplying different tar-

gets, as established by the previous work [19].

3.1.2 Restore Configuration

Restore is a component of Linux backup functionality,

which restores the file system image taken by the dump

command. Files or directories can be restored from full
or incremental backups. Restore version 0.4b15 on Red

Hat 6.2 is vulnerable to an environment variable attack

where the attacker modifies the path of an executable

and runs restore. This results in executing an arbitrary
command with super-user privileges, which leads to a

root compromise. In the published attack [2], the at-

tacker spawns a root shell. In order to establish normal

behaviour, restore is executed numerous times to pro-

cess backup files with different sizes [19].

3.1.3 Samba Configuration

The Samba suite provides printing and file sharing fa-
cilities for Windows clients and can run on most Linux

variants. Samba sets up printer and network shares that

appear as disks and printers under a Windows operat-

ing system. Red Hat 9.0 is shipped with Samba suite

version 2.2.7a, which has a vulnerability [3] that can be
exploited over the network to gain super-user privileges.

The buffer overflow occurs when a Samba service tries

to copy user supplied data into a static buffer without

checking. The published attack binds a root shell to a
network port. To establish normal behaviour, samba is

deployed on a host and activity was generated involv-

ing the mounting and unmounting of a samba share and

various file operations on the samba share including file

edit and copy operations [19].

3.1.4 Ftpd Configuration

Red Hat 6.2 is shipped with Washington University Ftp

Server version 2.6.0(1), which provides FTP access to
remote users. WuFtpD 2.6.0(1) is susceptible to an in-

put validation attack where the attacker can corrupt

the process memory by sending malformed commands

and overwrite the return address to execute a shellcode.
Although the attack is an input validation attack [4],

the deployment is similar to a buffer overflow attack. In

order to establish a normal behaviour, numerous FTP

sessions are formulated where each session involves a

login followed by a series of file upload and download

operations [19].

3.2 Anomaly Detectors

The anomaly detectors employed in this work monitor

system call traces to detect the attacks. System calls

are operating system routines, which provide the inter-
action between the applications and system resources

such as memory, disks and peripherals. Given that the

operations, which alter the system state are handled

through system calls, monitoring the applications at

the system call level provides a suitable granularity for
detecting the attacks.

Although numerous alternative detectors exist for

detecting buffer overflow attacks, there are various

traits, which make the anomaly detectors discussed in

this section particularly appropriate. First, they employ
different detection methodologies while monitoring ap-

plication system calls, with sliding window, Markov and

frequency based pattern recognition detectors all being

considered. Second, depending on the complexity of the
detector, they provide feedback in the form of anomaly

rates and (counter measure) delays, which can be uti-

lized to guide the search for the evasion attacks.

The relevant work on anomaly detection proposed

various techniques [28] [12] for extending the publicly
available Stide and pH detectors. In this work, however,

we employ Stide and pH because, in addition to being

publicly available, they do not require the vulnerable

applications to be recompiled for deployment. Specifi-
cally, the additional system state information (e.g. pro-

gram counter values, return addresses stored on stack)

utilized by the more recent work requires the applica-

tion being monitored to be compiled in a certain way to

make these aforementioned values deterministic. Con-
sidering system services such as ftpd and restore de-

pends on many other system libraries, this is likely to

require a recompile of the OS, which is beyond the scope

of this work.

In this work, detectors are employed with their de-
fault parameters as established by earlier studies [11]

[29] [15]. Needless to say, identifying suitable deploy-

ment parameters is crucial in ensuring the effective op-

eration of a detector. Depending on the application be-
ing monitored and false positive requirements, different

parameters may be suitable for different deployment

scenarios [22].

5

3.2.1 Stide

Forrest et al. [11] employed a methodology motivated

by immune systems. This characterizes the problem as

distinguishing ‘self’ from ‘non-self’ (normal and abnor-
mal behaviours respectively). An event horizon is built

from a sliding window applied to the sequence of system

calls made by an application during normal use. The se-

quences formed by the sliding window are stored in a
table, which establishes the normal behaviour model.

During the deployment (detection) phase, if the pat-

tern from the sliding window is not in the normal be-

haviour database, it is considered a mismatch. Stide is

employed with the parameterization assumed in earlier
studies, listed in Table 1.

Table 1 Stide configuration parameters.

Parameter Setting

Sliding window length 6

3.2.2 Process Homeostasis (pH)

Process Homeostasis (pH) [29] represents a second gen-
eration anomaly detector and is therefore designed to

address specific drawbacks of Stide. pH is implemented

as an extension to the Linux 2.2 Kernel. Therefore,

pH monitors system calls more efficiently by captur-
ing system calls directly at the kernel level as opposed

to Stide, which employs Strace2 to capture system calls.

pH monitors the changes in short sequences of system

calls by employing look-ahead pairs. While employing

the sliding window approach, pH does not store the
sliding window patterns but records tuples, which con-

sist of the current and past system calls and the sliding

window locations. Somayaji [29] established that the

look-ahead method is more efficient to store and could
potentially converge to a normal profile more quickly

than the sequence method. Additionally, tolerization

and sensitization concepts were introduced. Toleriza-

tion allows pH to improve false alarm rates by leaving

out minimal anomalies, which are likely to be caused by
slight changes in normal behaviour. Sensitization pre-

vents abnormal behaviour from leaking into the normal

behaviour database [29].

In addition, pH responds to attacks by slowing down

the offending process. The delay is an exponential func-

tion of the locality frame count (LFC) where the local-

ity frame count aims to identify the clusters of anoma-

2 Strace can be downloaded from http://sourceforge.net/

projects/strace/.

lies. To this end, pH simply maintains a count of how

many of the past system calls within the locality frame

were anomalous. Consequently, even though the attack

might minimize anomaly rate, it can still be detected

if the remaining anomalies are clustered together. pH
was employed with the training parameters, which are

listed in Table 2.

Table 2 pH configuration parameters.

Parameter Setting

Look-ahead pair window size 9

Locality frame window size 128

Delay factor 1

Suspend execve after 10 anomalies

Suspend execve duration 2 days

Anomaly limit 30

Tolerize limit 12

3.2.3 Process Homeostasis with a Schema Mask

(pHsm)

Inoue et al. [15] discussed the differences between look-

ahead pairs and sequences. In their paper, the authors

also proposed an improvement to pH based upon the

concept of a random schema mask. Their main motiva-
tion was the observation that longer windows improve

detection rates hence there exists a potential to increase

the difficulty of generating evasion attacks against pH

(and indirectly Stide and variants). We call the ex-
tended pH as pH with a schema mask (pHsm) in this

work. In pHsm, a longer sliding window is maintained

and a number of taps are taken from the sliding win-

dow. The locations of the taps are determined randomly

before training and this location information consti-
tutes the schema mask. The configuration parameters

for pHsm are detailed in Table 3.

Table 3 pHsm configuration parameters.

Parameter Setting

Look-ahead pair window size 20

Number of taps taken from the
sliding window

9

Tap locations Determined before
training

Locality frame window size 128

Delay factor 1

Suspend execve after 10 anomalies

Suspend execve duration 2 days

Anomaly limit 30

Tolerize limit 12

6

3.2.4 The Markov Model-Based Detector

The Markov Model is a statistical modelling technique,

which is useful for building probabilistic models of event

sequences evolving in time. Markov Models have been

utilized within the context of intrusion detection sys-

tems [31] [13] as in the related case of a Finite State
Automata representation [28]. The Markov Model was

selected as an anomaly detector in this work because:

(1) it can build probabilistic models using exemplars

from only one class (i.e. normal behaviour) and (2) it
can capture temporal (i.e. sequence) information with-

out employing a sliding window.

Although higher order Markov Models exist where

the current state depends upon a number of previ-

ous states, the Markov Model anomaly detector im-
plemented in this work employs a first order Markov

Model. In a first order Markov Model, the next state

is only dependent upon the current state, where such

an assumption is widely employed in these systems to
reduce the number of ‘free parameters’, which require

estimation. In order to establish values for the above

model parameters, the Baum-Welch model is assumed

[7]. The detection decision is based upon a characteriza-

tion of state transition behaviour, which was employed
in the previous Markov Model detector approaches [31]

and in Stide [5]. After the Markov Model is trained, a

test sequence is presented. If there exists a transition

in the test sequence, which was not encountered dur-
ing training (hence, the probability transition is zero),

a mismatch flag is set. A count of the mismatch flag

is maintained, and the anomaly rate is defined by the

number of mismatch flags divided by the total num-

ber of transitions encountered. Such an anomaly rate
implies that, if the test sequence follows the training

model (i.e. normal behaviour), it will encounter zero or

low numbers of mismatch flags. Thus, a low anomaly

rate is assigned. The configuration parameters for the
Markov Model detector are provided in Table 4.

Table 4 Markov Model parameters.

Parameter Setting

Order First order

Number of states 223 (Number of system calls)

Training algorithm Baum-Welch

3.2.5 Auto-Associative Neural Network

The auto-associative neural network is a multi-layer

perceptron configured in a ‘bottleneck’ topology – i.e.,

the hidden layer is configured with a reduced neuron

count relative to the input and output spaces. During

training, the same exemplar is presented to both in-

put and output. The architecture attempts to recreate

the input at the output under the ‘bottleneck’ limita-

tion, thus forcing the network to identify the most ap-
propriate encoding to correctly reconstruct the (single)

training category [23] [27] [26] [16]. An auto-associative

neural network therefore provides the basis for develop-

ing models from one-class data with post-training deci-
sions based upon the similarities to, or deviation from,

the behaviour that the auto-associative neural network

encapsulates. In our experiments, an auto-associative

neural network was employed as an anomaly detector.

As opposed to the other detectors discussed in the pre-
vious sections, which employ sequence information, the

input to the auto-associative neural network takes the

form of the frequency distribution of system calls. This

approach bears similarities to the detector employed by
Kang et al. [17], which uses a bag of words representa-

tion as the detector input. As such, the resulting fre-

quency distribution constitutes the normal behaviour

characteristics. Given the frequency distribution vec-

tor for the test trace, detection is therefore based upon
the divergence between the frequency distribution vec-

tors of the test trace and the ‘normal behaviour’. Since

the frequency distribution of a trace is calculated af-

ter the trace is complete, the auto-associative neural
network can be considered an ‘off-line’ detector, which

provides post-mortem analysis of the system call traces

after they are executed.

Given q dimensional data, a multilayer perceptron

with p nodes in the hidden layer (p ≪ q) and q nodes
in the output layer is trained. The goal of training is

to find an encoding that recreates the training parti-

tion. Under test conditions, the network will produce

an output similar to the input if the input is similar to

what was encountered during training. From the per-
spective of anomaly detection, if the applied input does

not produce an output similar to the input, it is con-

sidered anomalous. In order to measure the degree of

anomaly and produce an anomaly rate, the Euclidean
distance between input and output is compared to a

threshold. The calculated distance is scaled to vary be-

tween 0 and 100, where larger numbers indicate anoma-

lous behaviour. The training parameters for the auto-

associative Neural Network are detailed in Table 5, with
the training algorithm taking the form of the very effi-

cient second order conjugate gradient optimization al-

gorithm, making training much more efficient and more

accurate than the regular back propagation algorithm
[8].3

3 As implemented using the MATLAB Neural Network Tool-
box.

7

Table 5 Auto-associative Neural Network parameters.

Parameter Setting

No. of neurons in hidden layer 15

Hidden layer transfer function Hyperbolic tangent sig-
moid (tansig)

No. of neurons in output layer 223

Output layer transfer function Linear (purelin)

Training function Conjugant gradient
backpropagation

Maximum epochs 1000

Minimum mean square error 10−6

4 A ‘Black-box’ Attacker Scenario:

Evolutionary Exploit Generator

The process at the center of the proposed ‘black-box’

attacker involving the Evolutionary Exploit Genera-
tion (EEG) framework is Genetic Programming (GP).

The GP paradigm differs from most machine learn-

ing methodologies in that a ‘population’ of candidate

solutions is maintained concurrently throughout the
search process [6]. Each candidate solution, or individ-

ual, takes the form of a program i.e., a sequence of

system calls in the case of this work. Although param-

eters for the system calls are specified, there is no need

to support the specification of the internal state i.e.,
register values. This makes the resulting attacks real

exploits as opposed to just system call sequences.

Aside from being able to conduct a stochastic search

over a code based representation, GP provides several
properties that make it a particularly attractive model

for evolving exploits [21]. We consider the top three

properties to take the form of:

Representation: Machine learning paradigms gener-

ally impose an a priori representation on the nature

of a solution e.g., neurons in artificial neural net-

works, kernels in support vector machines or rules
in decision tree induction. The representation re-

quired by the exploits imposes a system call based

representation (although solutions based on the as-

sembly language of the target platform would also
be appropriate [20]). This precludes the utility of

most machine learning algorithms. Thus, the auto-

mated variants of earlier research in this area have

relied on exhaustive search, an option made possi-

ble by making extensive use of privileged informa-
tion from the target detector, e.g., the content of the

detector’s behavioural database post configuration

(training) [35] [33] [32]. By assuming the represen-

tation of the actual application, the credit assign-
ment process becomes more direct and support for

including the preamble is straight forward (merely

a question of concatenating preamble and exploit).

Multi-criteria fitness: Expressing exploit generation

as a single objective – for example constructing code

representing a valid exploit – would not sufficiently

encompass the breadth of the task at hand. In par-

ticular, exploits need to achieve a malicious objec-
tive while simultaneously minimizing the alarm rate

and reducing any delay imposed by detectors ca-

pable of dynamic/ reactive countermeasures. One

approach to doing this might be to merely linearly
combine three performance functions into a single

scalar value of fitness. However, Evolutionary Com-

putation provides a much better mechanism in the

form of Pareto multi-criteria formulations [10]. In

particular, assuming a Pareto formulation implies
that objectives are ranked relative to the number of

other individuals they dominate in the Pareto sense.

This avoids any need to impose arbitrary scaling

of different objectives and encourages solutions to
take the form of a front of non-dominated individ-

uals as opposed to converging to a single possibly

sub-optimal solution.

Obfuscation: Solutions from GP take the form of a

program expressed in terms of a system call se-
quence. However, not all system calls comprising

a solution necessarily contribute to the underlying

operation of the individual, where this artifact is

synonymous with the introns of biological genomes.
Code bloat or introns are a well known by product of

search in GP [6]. Typically, instructions correspond-

ing to intron behaviour are removed post learning.

However, when generating evasion attacks, introns

are beneficial to the attacker, if their statistical char-
acterization matches normal behaviour as measured

by the detector. During the fitness calculation, the

feedback from the detector guides evolution toward

the intron code that matches the statistical charac-
terization of normal behaviour. Consequently, this

represents a scenario, in which introns have a spe-

cific measurable contribution to the utility of the

individuals.

Figure 1 provides an overview of the EEG frame-
work. At each iteration during training, Pareto rank-

ing calculates the rank of each individual (i.e. an ex-

ploit) by employing the Pareto dominance concept as

detailed in Section 4.2. Higher ranked individuals cor-

respond to more successful exploits, which implies the
exploit minimizes the anomaly rate from the detector

and maximizes the fitness, as established in Figure 2.

At each iteration, two individuals are selected from the

population, in which the probability of selection is pro-
portional to the Pareto ranks. Two children are created

by applying the search operators as defined in Section

4.3. The resulting children are converted to executable

8

exploits and injected to the vulnerable application us-

ing publicly available code injection methods [1] [2] [3]

[4]. The feedback of the exploits takes two forms: First,

the anomaly rates (and delays for pH and pHsm) are

collected from the detector, which monitors the vulner-
able application. Second, attack fitness – in terms of

achieving the attack objectives – is calculated by em-

ploying the fitness function defined in Figure 2. Pareto

ranking, as detailed in Section 4.2, takes the anomaly
rate, delay and attack success as the measured param-

eters and ranks the exploits where the individuals are

encouraged to maximize the attack success and mini-

mize the delay and anomaly rate.

The principle EEG design decisions are now lim-
ited to defining the instruction set (representation) and

search and selection operators (establishes basis for

credit assignment), and establishing the appropriate

feedback (goals/ objectives) used to guide the process
of evolution. The following subsections address each of

these independently.

4.1 Representation

The instruction set is defined to be the 20 system calls

which are most frequently utilized by each vulnerable

application as discussed in Section 3.1. The implicit as-

sumption is that the most frequently employed system

calls are less likely to cause alarms than the infrequent
system calls. Determining the most frequently utilized

20 system calls involves an attacker to the analyse the

system calls on a local copy of the vulnerable appli-

cation. Such analysis can be performed using publicly
available system call profilers such as Strace and does

not require the internal knowledge of the vulnerable

application.

An EEG instruction is defined to be 4 bytes, where

the first 2 bytes are allocated for the function identifier
(i.e. the opcode) and one byte is allocated for each func-

tion parameters (i.e. operands). Therefore, EEG utilizes

a fixed-length representation where the first two bytes

determine the instruction and the remaining two bytes
can define up to two instruction parameters. A simpli-

fied instruction set for EEG is provided in Table 6 in

which an instruction is defined to be 1 byte for better

readability.

Furthermore, Table 7 provides an example of the
genotype to phenotype mapping. Based on the instruc-

tion set defined in Table 6, each instruction is converted

to a binary representation for decoding. The first four

bits determine the instruction and the remaining four
can define up to two parameters. If the instruction has

no parameters, the last four bits are ignored. For ex-

ample, the fourth instruction, which is 61 (decimal)

Table 6 A sample instruction set and parameters.

Instruction Set

Value Instruction

0001 exit ()
0010 open (< file >)
0011 write (< file >, < buffer >)

0100 read (< file >, < buffer >)
0101 close (< file >)

File Descriptors < file >

Value Descriptor

01 file1
10 file2
11 file3

Buffers < buffer >

Value Buffer

01 buffer1
10 buffer2
11 buffer3

in Table 7, is first converted to the binary represen-

tation. The first four bits (i.e. ‘0011’) maps to write

(< file >, < buffer >). The last four bits determine

the parameters, in which ‘11’ (binary) maps to file3 and
‘01’ (binary) maps to buffer1. As new instructions are

introduced as a result of initialization and mutation,

the validity of the individual is checked to ensure that

the instruction and parameter fields produce a valid in-
struction.

Table 7 Genotype to phenotype mapping of a sample individual
using the instruction set defined in Table 6.

Integer

Representation

Binary

Representation

Phenotype

40 0010 10 00 open (file2)
44 0010 11 00 open (file3)
59 0011 10 11 write (file2, buffer3)
61 0011 11 01 read (file3, buffer1)
88 0101 10 00 close (file2)
92 0101 11 00 close (file3)
16 0001 00 00 exit ()

4.2 Fitness Calculation and Pareto Ranking

Pareto Ranking is a method for combining multiple ob-
jectives under the concept of dominance [10]. Specifi-

cally, in the case of a problem in which multiple objec-

tives are being optimized, solution A dominates solu-

tion B, if and only if A is as good as B in all objectives
and A is better than B in at least one objective. An

individual, which is not dominated by any other in-

dividual is called a non-dominated individual. Pareto

9

EEG

Population

Pareto Ranking

The children are
inserted to the

population. The lowest
ranked two individuals

are discarded.

Search Operators

Two individuals are
selected, with

probability
proportional to the

rank.

Children

Search operators
are applied to
produce two

children.

Detector

Vulnerable
Application

Children are
converted to

shellcode and
injected.

1. Anomaly rate from the detector
2. Attack success

Fitness feedback is
returned to EEG.

Fig. 1 An overview of the EEG framework.

ranking succeeds in reducing the multi-objective vec-

tor into a scalar fitness value (i.e. the rank) without

combining features or assigning a priori weights. The

Pareto rank of an individual in our experiments is equal

to the number of individuals, which it dominates [25]. In
terms of evasion attack characteristics to be optimized,

the following objectives are considered:

1. Attack Success. The original attack contains a
standard shellcode, which uses the execve system

call to spawn a Linux shell upon successful execu-

tion. Execve is a system call, which executes the pro-

gram given as the first argument. Since execve is not

a frequently used system call for traceroute, restore,
samba and ftpd, it is expected that the original at-

tack will be detected easily. To this end, a different

strategy is employed for defining the exploit such

that the need to spawn a Linux shell is eliminated
[20]. Typically, most programs perform I/O opera-

tions – in particular to open, write to / read from

and close files. Therefore the goal of the attack is

altered to involve the following three steps, which

aim to gain super-user privileges:

(a) open the Linux password file (‘/etc/passwd’);

(b) write a line, which provides the attacker a super-
user account allowing login without a password;

(c) close the file.

The objective of the search process conducted by

EEG is to discover a sequence of system calls (and

appropriate arguments), which perform the above

three steps in the correct order (i.e. the attack can-
not write to a file, which it has not first opened),

while minimizing the anomaly rate from the detec-

tor. A behavioural success function rewarding the

above behaviour awards a total of 5 ‘points’ for es-

tablishing the behavioural steps for the ‘core’ attack

in Figure 2.

(a) Success = 0
(b) IF the sequence contains open (‘/etc/passwd’) THEN Success

+= 1
(c) IF the sequence contains write

(‘toor::0:0:root:/root:/bin/bash’) THEN Success +=
1

(d) IF the sequence contains close (‘/etc/passwd’) THEN Success
+= 1

(e) IF open precedes write THEN Success += 1
(f) IF write precedes close THEN Success += 1

Fig. 2 Fitness function for establishing the objectives of modi-
fying the Linux password file.

2. Anomaly Rate. The anomaly rate represents the

principal metric for qualifying the likely intent of a

system call sequence; a would-be attacker naturally

wishes to minimize the anomaly rate of the detector.
3. Delay. In addition to reporting anomaly rates, var-

ious anomaly detectors respond to anomalies by en-

forcing delays, as discussed in Section 3.2. There-

fore, the attacker aims to minimize the delays asso-

ciated with the attacks.

4.3 Search and Selection Operators

The search process progresses through the iterative ap-

plication of selection and search operators, Figure 6.
The selection operator is applied in two stages; in part

1, two individuals are identified from the population

(the parents) with probability of selection proportional

10

to the rank of the individual. Search operators are then

applied to the individuals, resulting in two children.

The children are appended to the population and the

population is Pareto ranked. The worst two individ-

uals (i.e. the individuals with the lowest two ranks)
are discarded from the population, hence restoring the

population size, or part 2 of the selection operator’s

role. Moreover, by pursuing a fitness function based on

Pareto ranks, we are able to seamlessly incorporate mul-
tiple criteria into the performance evaluation without

resorting to arbitrary combinations of unrelated objec-

tives [25]. Application of search and selection operations

continues until either the convergence or termination

criteria are satisfied, Figure 6. The training parame-
ters, which remain the same over all applications, are

detailed in Table 8. Individuals are defined using a vari-

able length format, and population initialization creates

individuals with varying program lengths.

Search operators take three forms: cut and splice
crossover, instruction-wise mutation and instruction

swap. Note that all search operators are applied

stochastically relative to a predefined probability of ap-

plication, Table 8. The specific details of each operator

are detailed below.

4.3.1 Cut and Splice Crossover

The crossover operator provides a scheme for inves-

tigating instruction sequences that exist currently in
the population, but in different contexts. The cut and

splice crossover operator selects, with uniform probabil-

ity, separate crossover points on each parent. Therefore,

the children can have different lengths from their par-
ents. An example of cut and splice crossover is provided

in Figure 3.

40 59 88 16 92 44 61 88 16 40 16

Crossover

40 59 40 16 61 88 16 88 16 92 44

Fig. 3 An example of cut and splice crossover.

4.3.2 Swap

The basic motivation of the swap operator is to pro-

vide the opportunity for investigating the significance

of different instruction orders within the same individ-
ual (the case of a correct instruction mix, but in the

wrong order). The swap operator is applied to a sin-

gle individual, selecting two instructions with uniform

probability and interchanging their position, as shown
in Figure 4.

92 16 59 40 44

Swap

40 16 59 92 44

Fig. 4 An example of the swap operator.

4.3.3 Instruction-wise mutation

The mutation operator provides a way to introduce

new sequences to the individual. Mutation is applied

instruction-wise, that is to say, each instruction is tested
independently for modification. If the test returns true

then the instruction is replaced with an alternative in-

struction from a predefined list of instructions. More-

over, the probability of applying the mutation oper-
ator decays linearly with the tournament count, thus

lowering the likelihood of introducing new instructions

(i.e., not currently in the population) as the population

evolves. This places more emphasis on the crossover op-

erator as evolution progresses, thus reinforcing the reuse
of system call sequences, which were demonstrated ear-

lier to minimize detection. Figure 5 provides an exam-

ple of instruction-wise mutation, in this specific case

resulting in two instructions being modified.

5 A ‘White-box’ Attacker Scenario: Exhaustive

Search

In order to compare against the ‘black-box’ approach

discussed in Section 4, various ‘white-box’ evasion at-
tack strategies are considered. A ‘white-box’ method

requires a focused and exhaustive search against the de-

tection mechanisms and can employ internal knowledge

11

92 16 59 40 44

Mutation

92 61 59 88 44

Fig. 5 An example of the mutation operator.

1. Initialize the population
2. Pareto rank the population
3. WHILE ! (Stop Criteria) AND ! (Convergence Criteria)

(a) Select two individuals from the population and copy it
to chidren1 and children2

(b) ApplyCrossover(children1, children2, Pxo)
(c) ApplyMutation(children1, Pmut)

ApplyMutation(children2, Pmut)
(d) ApplySwap(children1,Pswp)

ApplySwap(children2,Pswp)
(e) Insert chidren1 and children2 into the population and

Pareto rank
(f) Remove the worst ranking two individuals and restore

the population size

Fig. 6 Pseudo-code of the EEG training.

Table 8 Genetic Programming parameters.

Parameter Setting

Crossover 0.9 probability

Mutation 0.01 probability, linearly decreasing to
0 over the tournament limit

Swap Instruction swap within an individual
with 0.5 probability

Selection Tournament of 4 individuals

Stop criteria 100,000 tournaments or until the con-
vergence criteria is met

Convergence
criteria

If the Pareto ranks remain unchanged
over 10 tournaments

Population 500 individuals with instruction selec-
tion probability proportional to the
percentage of the instruction in normal
use cases

Program
length

Initialized over 240 system calls, max-
imum 1,000 system calls

Replacement Children replace the lowest ranked two
individuals

Training time Approximately 2 days

Number of runs 50

such as the training data, normal behaviour database
or the detection methodology utilized. Thus, for each

target detector, a separate ‘white-box’ method needs to

be developed that fits the characteristics and the con-

straints of the detector. For example, a ‘white-box’ at-
tacker against the neural network detector, which moni-

tors the frequency distribution of system calls, may not

succeed against a detector, which monitors not only

the frequencies but sequences of system calls. To this

end, the ‘white-box’ attackers developed against each

detector are presented separately in the following sub-

sections.

5.1 The ‘White-box’ Attacker Against Stide

Wagner et al. [35] employed language theory to formu-
late two sets: a set of malicious sequences and a set

of normal behaviour sequences. If the intersection of

these sets is not an empty set, it implies that an eva-

sion attack can be constructed. On the other hand, Tan

et al. [32] viewed the problem as increasing the length
of the malicious sequence beyond the sliding window

length, which means that the sliding window patterns

generated on the malicious sequence would be within

normal behaviour. The common trait of both methods
is to generate an evasion attack, which does not contain

an anomalous sub-sequence. In other words, every slid-

ing window pattern that the evasion attack produces

should be in the normal database of the detector.

Sharing this goal, the ‘white-box’ evasion attack

generation technique developed for Stide in this work
takes the Stide normal database (i.e. the sequences of

system calls) and builds a connectivity graph where

each pattern in the normal database is represented as a

node. Figure 7 provides an example in which a simple

Stide normal database is provided. The sliding window
length is set to 3 for simplicity. Each number in Fig-

ure 7 uniquely maps to a system call. Furthermore, the

connectivity graph, which corresponds to the normal

database is given. In the connectivity graph, a unidi-
rectional connection from A = [1 2 3] and D = [2 3 7]

means that the graph node (i.e. sliding window pattern)

D can follow A without creating any anomalous sub-

sequences. The exhaustive search was implemented as

a depth-first graph search where the search terminates
when the resulting sequence contains the malicious sys-

tem calls (in this case, open - write - close). For exam-

ple, the depth first search of the path A ⇒ D ⇒ G

produces a sequence of [1 2 3 7 1], which does not pro-
duce any anomalies.

5.2 The ‘White-box’ Attacker Against pH

As with the methodology proposed by Wagner et al.

[35], the methodology developed against pH in this

work exploits the use of sliding windows in pH and

builds attacks from the sliding window patterns encoun-
tered during training. Simply put, the approach devel-

oped by Stide in Section 5.1 is modified with a slid-

ing window length of 9. This is an acceptable approach

12

A = [1 2 3]
B = [2 3 5]
C = [2 3 2]
D = [2 3 7]
E = [3 2 3]
F = [3 5 3]
G = [3 7 1]
H = [5 3 7]

[1 2 3]

[2 3 2]

[3 2 3]

[2 3 5]

[3 5 3]

[5 3 7]

[2 3 7] [3 7 1]

Stide Normal
Database

Connectivity Graph

Fig. 7 A example of the Stide normal database (sliding window
length of 3) and the corresponding connectivity graph

since a ‘white-box’ approach implies that the attacker
can utilize all and any knowledge about the detector,

including the detection methodology. This reduces the

search space size of a ‘white-box’ search, hence short-

ening the time it takes to find an attack.

5.3 The ‘White-box’ Attacker Against pHsm

Although, as of this writing, pHsm has not been em-

ployed in previous evasion attack research, the method-
ology discussed in Section 5.1 applies to pHsm. Two

attributes of pHsm differentiate it from Stide and pH:

(1) the sliding window length is 20 and (2) a schema

mask is applied to the sliding window. However, given

a ‘white-box’ access to the detector, it is realistic to
assume that the attacker knows both the sliding win-

dow length and the schema mask. Thus, the task can

be formulated as generating a evasion attack against a

detector with a sliding window of 20 system calls. This
implies that the methodology detailed in Section 5.1 is

modified to reflect a sliding window length of 20. If the

generated attack does not raise any alarms, the applica-

tion of a schema mask will not generate any anomalies

since the purpose of the schema mask is to select 9 val-
ues from a sliding window pattern of length 20 (which

does not produce any anomalies as a requirement of the

exhaustive search).

5.4 The ‘White-box’ Attacker Against Markov

Model-Based Detector

Tan et al. [30] utilized a methodology to generate eva-

sion attacks against a Markov Model detector. The

main focus of their experiments was to determine the
operational limits of Stide, therefore the attacks were

generated against Stide and tested against both Stide

and the Markov model detector. Given that the Markov

Model detector employed in this work is a first order
model, as detailed in Section 3.2.4, the current state

(i.e. the system call) depends solely upon the previ-

ous system call. This differs from Stide, pH and pHsm,

where the current state depends upon a history of previ-

ous system calls. The ‘white-box’ search on the Markov

Model can be formulated as a graph search where each

system call is a state. States A and B are connected

in the graph if the detector encounters any transitions
from A to B in the training data. The search for eva-

sion attacks now boils down to a depth-first search

on the graph. The search terminates if the generated

sequence contains the malicious sequence (i.e. open -
write - close).

5.5 The ‘White-box’ Attacker Against

Auto-Associative Neural Network

The Neural Network detector differs from the rest of

the anomaly detectors utilized in this work since the

detection is based upon the frequency distribution as

opposed to the sequence of system calls. Such a repre-
sentation is more compressed than the sequence-based

methods, which means the attackers do not have to

consider determining sequences that contain malicious

system calls. For example, from the perspective of the
Neural Network detector, which monitors the frequency

distribution of system calls, sequence 2 2 1 3 2 2 1 is

equivalent to 1 1 2 2 2 2 3. Furthermore, an evasion

attack can evade detectors, which monitor system call

sequences by repeating patterns that are in the normal
database. However, such an approach may not work for

a detector monitoring system call frequencies because

although the sequences employed in the evasion attack

are in the normal database, the resulting frequency dis-
tribution may deviate from the frequency distributions

encountered during training. The ‘white-box’ method-

ology developed against the Neural Network detector

analyses the frequency distributions in the training sets

and generates evasion attacks to match the frequency
distribution. Again, this conforms to a ‘white-box’ as-

sumption since the attacker can use internal knowledge

including access to the training partition. Given that

the detector does not employ sequence information, the
methodology rearranges the ordering of the system calls

randomly. Thus, as long as the frequency distributions

match and the malicious open-write-close sequence ex-

ists, the ‘white-box’ attacker does not care about the

ordering.

6 Results

To date, the approach to evasion attack evaluation has
been to report the anomaly rates of attacks against the

detector for which they were trained. For example, an

attack trained for Stide was tested against Stide alone.

13

Although such a deployment scenario is sufficient to

make a comparison between the original and the eva-

sion attack, a natural extension is to deploy the evasion

attacks against other detectors (e.g. an attack for Stide

tested against pH). In such an extended scenario, it
is important to make the distinction between a ‘train-

ing’ detector and a ‘test’ detector. The training detec-

tor is the anomaly detector with which the proposed

approach interacted while generating the evasion at-
tacks. On the other hand, a test detector is an alter-

nate anomaly detector that was not employed during

the course of crafting the attack. Such a scenario illus-

trates the case of an attacker using a different detector

to generate evasion attacks. Thus, we aim to analyse the
anomaly rate of the automatically generated ‘black-box’

and ‘white-box’ evasion attacks against a cross-section

of test detectors. Such an analysis provides insight into

the degree of portability that might be expected in an
evasion attack evolved under one context by evaluat-

ing under a cross-section of contexts. By doing so, we

model the scenario in which an attacker is only able

to gain access to a single target detector for the pur-

poses of training their evasion attack. Such an evalua-
tion therefore answers the question as to what degree

successful/ unsuccessful performance under one detec-

tor implies similar behaviours under the other detec-

tors, or conversely, are there particular detectors that
represent better training targets than others (as they

result in evasion attacks that are more general)? Nat-

urally, such an evaluation still respects commonality in

the application against which the evasion attack is de-

signed.
In addition, as pointed out in the literature review,

previous work [35] [33] [32] [12] [24] [14] assumed a

‘white-box’ access to the anomaly detectors. This im-

plied that the attacker could use the normal database
of the detector, the (detector) training sets and knowl-

edge of the detection mechanism to facilitate the ‘white-

box’ attack generation process. On the other hand, the

‘black-box’ approach taken in this work implies that

knowledge of the detector’s internal mechanism is ‘hid-
den’ from the attacker. Therefore, the attacker has to

interact with the detector during its operation and uti-

lize feedback from the detector (e.g., in the form of

anomaly rates) to facilitate the ‘black-box’ attack gen-
eration process. Thus, we investigate whether an at-

tacker can generate evasion attacks without using the

internal knowledge of the detector.

6.1 Minimizing anomaly rates

Table 9 details the anomaly rate of both ‘black-box’

and ‘white-box’ exploits, when the exploits are gener-

ated for a particular detector and tested against all

five detectors but without including the preamble in

the estimation of the anomaly rate. The ‘black-box’

EEG maintains multiple solutions per application/ de-

tector pair, hence multiple exploits are generated. On
the other hand, ‘white-box’ methodologies terminate

when an exploit is found, thus, typically only one ex-

ploit is generated per application/detector pair. For the

comparisons between ‘black-box’ and ‘white-box’ ap-
proaches, the best EEG exploit is selected based on the

least anomaly rate (observed during training).

The first group of results reflects the training detec-

tor case of Stide. Comparing ‘black-box’ versus ‘white-
box’ results (respectively the left versus right hand

side of Table 9) indicates, for example, that a 16.67%

anomaly rate is returned under the target Stide detec-

tor on traceroute for the case of a ‘black box’ exploit

authoring whereas it produces a 81.25% anomaly rate,
when deployed against pHsm. Similarly, the ‘white-box’

exploit for Stide succeeds in executing without any

anomalies, i.e. 0% anomaly rate. However, when it is

deployed against pHsm, it produces an 18.97% anomaly
rate. Hence, the anomaly rates are generally higher

when the exploit is deployed against different test de-

tectors from the Stide training target. Comparison of

the exploit anomaly rates in Table 9, indicates that
‘white-box’ methodologies produce exploits with lower

anomaly rates. However, ‘white-box’ assumption comes

with the cost of requiring access to the internal detector

knowledge such as normal behaviour databases. Requir-

ing such access has the following implications:

– The ‘white-box’ methodologies generally boil down

to performing an exhaustive search. Thus, the uti-

lization of internal knowledge is required to limit the

exhaustive search so that it is computationally fea-
sible as the total number of all possible system call

sequences tends to be very large (i.e. 102341 for a

sequence length of 1000 [18]).

– In order to formulate attack generation as an ex-
haustive search, certain abstractions need to be

made such as utilizing sliding window patterns or

the formulation of the search on a graph structure,

as discussed in Section 5. The success of the result-

ing attacks heavily depends on the accuracy of such
abstractions.

– Since different detectors implement a normal be-

haviour model in different ways, a separate ‘white-

box’ technique must be developed per detector. This
is likely to raise scalability issues if multiple detec-

tors, employing different detection mechanisms need

to be tested.

14

‘Black-box’ Exploits

Stide pH pHsm Markov

Model

Neural

Network

Target: Training conducted on Stide

traceroute 16.67% 29.63% 81.25% 14.29% 37.24%

restore 0.40% 0.20% 0.81% 0.20% 2.73%

samba 0.50% 0.30% 0.20% 0.20% 57.15%

ftpd 57.14% 33.33% 100.00% 18.18% 34.71%

Target: Training conducted on pH

traceroute 98.25% 11.71% 13.00% 10.92% 73.03%

restore 42.57% 0.10% 0.20% 0.20% 1.80%

samba 81.63% 0.10% 0.71% 0.30% 36.21%

ftpd 24.30% 0.10% 1.12% 0.20% 11.55%

Target: Training conducted on pHsm

traceroute 100.00% 86.10% 86.15% 15.08% 100.00%

restore 74.37% 0.60% 11.01% 0.20% 16.12%

samba 99.50% 31.22% 29.23% 25.47% 40.35%

ftpd 100.00% 55.12% 38.73% 33.57% 14.38%

Target: Training conducted on Markov Model

traceroute 100.00% 85.26% 84.56% 0.10% 100.00%

restore 99.30% 41.69% 51.93% 0.10% 32.06%

samba 100.00% 37.81% 28.50% 0.10% 43.39%

ftpd 100.00% 42.50% 26.07% 0.10% 12.50%

Target: Training conducted on Neural Network

traceroute 100.00% 99.50% 99.29% 75.62% 2.47%

restore 100.00% 97.28% 94.50% 58.54% 2.90%

samba 100.00% 87.11% 83.10% 51.25% 16.68%

ftpd 97.39% 61.83% 20.82% 30.07% 3.46%

‘White-box’ Exploits

Stide pH pHsm Markov

Model

Neural

Network

Target: Exhaustive search conducted on Stide

traceroute 0.00% 5.80% 18.97% 0.00% 100.00%

restore 0.00% 0.00% 0.00% 0.00% 100.00%

samba 0.00% 4.39% 19.07% 0.00% 100.00%

ftpd 0.00% 7.87% 14.66% 0.00% 100.00%

Target: Exhaustive search conducted on pH

traceroute 0.00% 0.00% 5.26% 0.00% 100.00%

restore 0.00% 0.00% 0.00% 0.00% 100.00%

samba 0.00% 0.00% 4.17% 0.00% 100.00%

ftpd 0.00% 0.00% 0.00% 0.00% 100.00%

Target: Exhaustive search conducted on pHsm

traceroute 0.00% 0.00% 0.00% 0.00% 100.00%

restore 0.00% 0.00% 0.00% 0.00% 100.00%

samba 0.00% 0.00% 0.00% 0.00% 100.00%

ftpd 0.00% 0.00% 0.00% 0.00% 100.00%

Target: Exhaustive search conducted on Markov Model

traceroute 96.74% 96.63% 100.00% 0.00% 100.00%

restore 97.78% 75.86% 80.26% 0.00% 100.00%

samba 99.16% 81.90% 81.90% 0.00% 100.00%

ftpd 98.02% 90.82% 91.95% 0.00% 100.00%

Target: Exhaustive search conducted on Neural Network

traceroute 100.00% 100.00% 71.41% 66.58% 1.87%

restore 11.17% 0.07% 0.07% 0.03% 0.22%

samba 85.67% 42.91% 42.91% 42.80% 2.38%

ftpd 74.78% 49.90% 0.17% 24.96% 0.46%

Table 9 Anomaly rates of the ‘black-box’ and ‘white-box’ exploits tested without preamble on the Stide, pH, pHsm, Markov Model
and Neural Network detectors. The exploit anomaly rates are categorized according to the target detectors.

Table 10 details the anomaly rate of the correspond-

ing attacks, which also includes the anomalies from the

preamble. The results show that although ‘white box’
attackers can craft an exploit with 0% anomaly rate

under no preamble conditions (as shown in Table 9)

the resulting attacks produce anomalies above 0% when

the required preamble is included. For example, all the
‘white-box’ exploits generated against pHsm in Table

9 produce 0% anomalies, except the cases when they

are deployed against the Neural Network detector. On

the other hand, the corresponding ‘white-box’ attacks

Table 10 produce anomaly rates between 0.95% and
100%.

A distinct trend emerges with respect to ‘black-box’

and ‘white-box’ exploits. While the inclusion of the

preamble generally increases the anomaly rate for the

‘white-box’ attacks, it frequently reduces the anomaly

rates for ‘black-box’ attacks. This is likely due to the
fact that EEG utilizes the code bloat property of GP

to generate exploits, which are comparably longer than

the ‘white-box’ exploits (detailed later by Tables 12

and 13). On the other hand, ‘white-box’ techniques uti-
lize exhaustive search, which terminates when a mali-

cious sequence is found therefore, the sequences tend

to be shorter (with the exception of Neural Network

exploits, Table 12). Given that the break-in phase (i.e.

the preamble, the details of which are provided in Table

11) is anomalous, a longer exploit has a better chance
of reducing the overall attack anomaly rate.

The anomaly rates in Table 10 indicate that attacks

against the Markov Model do not generalize well to the

other detectors. Given that a first order Markov Model

can be described as a detector with a sliding window

length of 2 (i.e. the current state depends only upon
the immediately previous state) as opposed to Stide,

pH and pHsm with sliding window lengths greater than

or equal to 6, it is conceivable that an attack that op-

timizes for a shorter sliding window may not be appli-
cable to the detectors utilizing a longer sliding window.

When the attacks generated against the Neural Net-

work detector were deployed against other detectors,

the resulting exploit and attack anomaly rates were

typically high for the alternative detectors. Conversely,
attacks not specifically trained against the Neural Net-

work tended to be detected by the Neural Network,

where this was particularly true of the ‘white box’ ap-

proach. This could be attributed to two factors: (1) as
opposed to utilizing system call sequence information,

a Neural Network detector utilizes the frequency dis-

tribution of system calls, which is a more compressed

15

‘Black-box’ Attacks

Stide pH pHsm Markov

Model

Neural

Network

Target: Training conducted on Stide

traceroute 10.96% 33.75% 75.36% 7.95% 15.89%

restore 46.25% 48.69% 59.51% 21.09% 6.44%

samba 3.00% 8.15% 7.41% 5.45% 9.48%

ftpd 19.30% 22.19% 38.21% 6.20% 2.69%

Target: Training conducted on pH

traceroute 73.25% 18.29% 30.72% 8.14% 44.95%

restore 63.39% 48.57% 59.43% 21.05% 6.11%

samba 19.74% 8.11% 10.06% 5.47% 9.29%

ftpd 20.60% 16.11% 28.18% 4.50% 3.16%

Target: Training conducted on pHsm

traceroute 96.15% 83.27% 85.12% 14.42% 100.00%

restore 76.46% 48.87% 63.67% 21.10% 9.55%

samba 23.40% 14.45% 15.84% 10.64% 11.76%

ftpd 41.39% 31.19% 38.43% 13.69% 3.64%

Target: Training conducted on Markov Model

traceroute 95.98% 82.65% 83.97% 0.20% 100.00%

restore 86.63% 65.34% 79.92% 21.05% 14.27%

samba 23.24% 15.72% 15.63% 5.45% 7.40%

ftpd 41.48% 27.76% 35.01% 4.47% 3.92%

Target: Training conducted on Neural Network

traceroute 96.15% 96.27% 97.97% 71.92% 1.63%

restore 86.88% 87.55% 97.04% 44.52% 5.60%

samba 23.53% 25.84% 26.72% 15.92% 5.77%

ftpd 40.76% 33.08% 41.62% 12.76% 1.26%

‘White-box’ Attacks

Stide pH pHsm Markov

Model

Neural

Network

Target: Exhaustive search conducted on Stide

traceroute 2.61% 18.85% 36.04% 1.54% 100.00%

restore 73.46% 76.78% 86.23% 33.10% 100.00%

samba 3.51% 9.87% 9.70% 6.45% 100.00%

ftpd 18.29% 21.51% 14.73% 5.84% 100.00%

Target: Exhaustive search conducted on pH

traceroute 3.95% 22.89% 43.06% 2.20% 100.00%

restore 75.03% 78.31% 87.97% 33.79% 100.00%

samba 3.59% 9.94% 9.14% 6.65% 100.00%

ftpd 18.92% 21.88% 14.49% 6.05% 100.00%

Target: Exhaustive search conducted on pHsm

traceroute 1.53% 9.36% 15.10% 0.95% 69.03%

restore 75.03% 78.31% 87.97% 33.79% 100.00%

samba 3.59% 9.95% 9.06% 6.65% 100.00%

ftpd 18.84% 21.79% 14.39% 6.02% 35.49%

Target: Exhaustive search conducted on Markov Model

traceroute 68.15% 73.94% 87.02% 1.33% 100.00%

restore 79.06% 80.83% 90.35% 33.04% 100.00%

samba 6.54% 12.24% 11.27% 6.60% 100.00%

ftpd 22.13% 24.65% 17.25% 5.91% 40.29%

Target: Exhaustive search conducted on Neural Network

traceroute 94.83% 95.52% 71.04% 62.36% 3.84%

restore 11.74% 0.78% 0.86% 0.34% 0.27%

samba 81.14% 41.09% 41.04% 40.79% 3.12%

ftpd 74.35% 49.68% 0.28% 24.82% 0.95%

Table 10 Anomaly rates of the ‘black-box’ and ‘white-box’ attacks tested with preamble on the Stide, pH, pHsm, Markov Model and
Neural Network detectors. The attack anomaly rates are categorized according to the target detectors.

representation of system call sequences; (2) in utilizing

internal knowledge of a detector ‘white box’ approaches

tie themselves more closely to specific ‘families’ of de-
tector than the ‘black box’ approach. Given the dis-

similarity between representations employed by Neural

Network and the other detectors, less generalization is

possible between behaviours appropriate for defeating
both classes of detectors. Conversely, the ‘black box’

approach establishes attack behaviours without resort-

ing to detector specific information, where this appears

to confer more generic/ less specific attacks. This also

implies that from a detector deployment perspective,
multiple detectors with fundamentally different repre-

sentations should be utilized for maximizing the likeli-

hood of attack detection.

In addition to providing a comparison between

‘black-box’ and ‘white-box’ exploits, we also provide

the anomaly rates observed for all the exploits evolved
by EEG using box plot analysis [9]. Such analysis is

not possible for ‘white-box’ attacks because the search

has a very limited focus: finding the first exploit with

0% anomaly rate. This implies that, the ‘white-box’
methodologies provide one attack per attack, detector

pair whereas the EEG provides 25,000 exploits, i.e. 50

runs, 500 per population, as defined by Table 8.

The box plot defines the third quartile, median and

first quartile. Whiskers extend from each end of the box

to the adjacent values in the data which are within 1.5
times the inter-quartile range from the ends of the box.

Outliers are data with values beyond the ends of the

whiskers and are displayed with a plus sign.

As opposed to Tables 9 and 10, which focus on the

best performing attacks, Figure 8 shows the box plot

analysis of the ‘black-box’ exploit anomaly rates. Sim-
ilarly, Figure 9 provides the box plot analysis of the

‘black-box’ attack anomaly rates. In addition to show-

ing the distribution of exploit and attack anomaly rates,

Figures 8 and 9 further demonstrate that it is easier

to evade Neural Network and Markov Model detectors,
since the exploits generally achieve lower anomaly rates

for them. This is due to the fact that Neural Network

detector utilizes a compressed representation of system

calls (i.e. sequences are compressed into a frequency
distribution) and Markov Model only looks at the pre-

vious system call (i.e. window size of 2 as opposed to 6

and 9 for Stide and pH/pHsm, respectively).

16

0

10

20

30

40

50

60

70

80

90

100

Stide pH pHsm Markov Model Neural Network

A
no

m
al

y
R

at
e

(%
)

(a) traceroute

0

10

20

30

40

50

60

70

80

90

100

Stide pH pHsm Markov Model Neural Network

A
no

m
al

y
R

at
e

(%
)

(b) restore

0

10

20

30

40

50

60

70

80

90

100

Stide pH pHsm Markov Model Neural Network

A
no

m
al

y
R

at
e

(%
)

(c) samba

0

10

20

30

40

50

60

70

80

90

100

Stide pH pHsm Markov Model Neural Network

A
no

m
al

y
R

at
e

(%
)

(d) ftpd

Fig. 8 Box plot analysis of ‘black-box’ exploit anomaly rates, plotted separately per application.

0

10

20

30

40

50

60

70

80

90

100

Stide pH pHsm Markov Model Neural Network

A
no

m
al

y
R

at
e

(%
)

(a) traceroute

10

20

30

40

50

60

70

80

90

100

Stide pH pHsm Markov Model Neural Network

A
no

m
al

y
R

at
e

(%
)

(b) restore

4

6

8

10

12

14

16

18

20

Stide pH pHsm Markov Model Neural Network

A
no

m
al

y
R

at
e

(%
)

(c) samba

0

5

10

15

20

25

30

35

Stide pH pHsm Markov Model Neural Network

A
no

m
al

y
R

at
e

(%
)

(d) ftpd

Fig. 9 Box plot analysis of ‘black-box’ attack anomaly rates with preamble, plotted separately per application.

17

6.2 Impact of detector delay counter measure

In this work, we observe that there are two parts to

each attack, the preamble and the exploit. The pream-

ble is composed of system calls that the application
executes when attacker is trying to gain control. On

the other hand, an exploit contains system calls after

the attacker gains full control of the application. During

the preamble phase, the attacker does not have full con-

trol over the application hence an attacker may not be
able to prevent the vulnerable application from generat-

ing anomalous behaviour. The length and the anomaly

rates of the preamble components for each vulnerable

application – as summarized in Table 11 – indicates
that preambles are typically long (with the exception of

traceroute preamble, a few thousand system calls) and

they are fairly anomalous. The previous work (specifi-

cally [35]) assumed that an attacker can gain control of

the application silently. However, the above preamble
analysis indicates that the preamble leaves anomalous

system call traces, at least in the cases of traceroute, re-

store, samba and ftpd applications. The anomalous na-

ture of the preambles may also impact on the (counter
measure) delays that certain detectors enforce on the

attacks.

Table 11 Details of the preamble components. Each applica-
tion preamble has five anomaly rates, against each detector. The
length of the preambles (no. of system calls) are provided in
brackets under each application name.

Stide pH pHsm Markov

Model

Neural

Network

traceroute
(53)

6.98% 36.49% 77.78% 8.54% 22.04%

restore
(1,425)

77.82% 81.01% 93.67% 35.08% 13.29%

samba
(3,868)

3.57% 9.97% 12.07% 6.78 6.34%

ftpd
(2,601)

19.04% 21.94% 14.30% 6.11% 6.88%

Table 12 Length of the ‘white-box’ exploits generated against
five anomaly detectors (no. of system calls).

Stide pH pHsm Markov

Model

Neural

Network

traceroute 77 38 158 97 736

restore 92 60 60 95 167,207

samba 213 91 90 124 65,648

ftpd 135 43 54 106 334,252

Table 13 Length of the ‘black-box’ exploits generated against
five anomaly detectors (no. of system calls).

Stide pH pHsm Markov

Model

Neural

Network

traceroute 34 118 1,000 957 1,000

restore 1,000 1,000 999 1,000 1,000

samba 1,000 1,000 1,000 983 1,000

ftpd 11 1,000 994 1,000 1,000

Pareto ranking allows EEG to maintain solutions,

which can optimize different objectives. Given that pH

and pHsm provide delay feedback, EEG provides mul-
tiple best exploits against these detectors. Namely, two

best exploits can be selected: (1) the exploit that min-

imizes the anomaly rate against the training detector

– as reported in Section 6.1 – and (2) the exploit that
minimizes the delay against the training detector.

Therefore, in addition to selecting the best ‘black-
box’ exploits according to the anomaly rates, an addi-

tional ‘best’ exploit is selected according to delays, for

pH and pHsm detectors. For all other detectors, best

attacks are selected based only on the anomaly rates,

as detailed in Section 6.1, since only pH and pHsm pro-
vide delay feedback. Thus, delays reported in Tables 14

and 15 include two best attacks for pH and pHsm. The

delays provided in brackets are for exploits optimizing

the delay and the remaining delays are for the attacks
optimizing the anomaly rate.

The ‘white-box’ approaches focus on finding the first
exploit with 0% anomaly rate; thus delays, which result

from the anomalies in the exploits, are typically not

considered as a part of the ‘white-box’ search. On the

other hand, when an exploit with 0% anomaly rate is

deployed against another target detector and particu-
larly when the preamble is included; the anomaly rates

and consequently delays become substantial.

Table 14 details the delays for both ‘black-box’ and

‘white-box’ exploits (no preamble), when the best per-

forming individuals trained on a particular detector are

tested against all five detectors. Similarly, Table 15 de-
tails the delays for the corresponding attacks (preamble

plus exploit). Although Stide keeps track of the locality

frame count, pH and pHsm employs the frame count to

delay the processes. Hence, the delays are reported only

for pH and pHsm. The locality frame count keeps track
of the anomalies recorded over a period (by default,

the previous 128 system calls). Therefore, a cluster of

anomalies produce high locality frame counts causing

long delays whereas the same number of anomalies dis-
tributed over a longer time frame (i.e. more system

calls) produces smaller locality frame counts, causing

shorter delays.

18

‘Black-box’ Exploits

pH pHsm

Target: Training conducted on Stide

traceroute 0.27 0.16

restore 9.99 17.81

samba 10.04 9.86

ftpd 0.03 0

Target: Training conducted on pH

traceroute 1.11 (0.01) 1.00 (0.00)

restore 9.94 (9.94) 11.11 (11.11)

samba 9.94 (9.94) 14.02 (14.02)

ftpd 9.94 (9.94) 23.84 (23.84)

Target: Training conducted on pHsm

traceroute 1.65× 1035 (0.01) 1.65× 1035 (0.00)

restore 15.08 (10.03) 3.94× 107 (9.87)

samba 3.88× 1013 (0.10) 7.37× 1012 (0.00)

ftpd 6.44× 1023 (0.01) 9.86× 1017 (0.00)

Target: Training conducted on Markov Model

traceroute 3.17× 1034 1.10× 1034

restore 6.29× 1018 6.52× 1023

samba 2.02× 1019 2.00× 1014

ftpd 9.06× 1018 7.52× 1012

Target: Training conducted on Neural Network

traceroute 2.22× 1039 1.86× 1039

restore 5.04× 1038 5.66× 1037

samba 9.26× 1035 9.19× 1034

ftpd 1.84× 1028 3.46× 1022

‘White-box’ Exploits

pH pHsm

Target: Exhaustive search conducted on Stide

traceroute 0.69 0.58

restore 0.84 0.73

samba 246.86 5.00× 1010

ftpd 1.27 1.16

Target: Exhaustive search conducted on pH

traceroute 0 0.19

restore 0 0

samba 0 0.72

ftpd 0 0

Target: Exhaustive search conducted on pHsm

traceroute 0 0

restore 0 0

samba 0 0

ftpd 0 0

Target: Exhaustive search conducted on Markov Model

traceroute 0.89 0.78

restore 0.87 0.76

samba 1.16 1.05

ftpd 0.98 0.87

Target: Exhaustive search conducted on Neural Network

traceroute 2.05× 1039 3.82× 1038

restore 4.84× 1022 6.19× 1024

samba 9.49× 1040 9.49× 1040

ftpd 5.66× 1041 7.32× 1038

Table 14 Delays (in seconds) of the ‘black-box’ and ‘white-box’ exploits (no preamble) tested on the Stide, pH, pHsm, Markov Model
and Neural Network detectors. The exploit delays are categorized according to the target detectors. For pH and pHsm, delays reported
in brackets are for the best exploits optimizing the delay. All the other delay measurements are for the best exploits optimizing the
anomaly rate.

pH and pHsm respond to attacks by delaying the

process based on the observed locality frame count.

Specifically, the delay is expressed in terms of df ×

0.01 × 2LFC , where the higher df (delay factor, which

is equal to 1 by default) can cause longer delays and

LFC signifies how many of the past 128 system calls

were anomalous. Even a slight increase in locality frame
count is sufficient to stop an attack since its effect on

delay is exponential and it remains high until the lo-

cality frame moves beyond the anomalous segment of

system calls.

When the delays associated with exploits are com-
pared with the attack delays, it becomes apparent that

the anomalous nature of the preambles cause most of

the attacks to be delayed substantially. While the cor-

responding exploits are only delayed by a few seconds,

Table 14, the attacks are delayed by centuries (any de-
lay above 1015 is expressed in centuries) as shown in

Table 15. This implies that although the exploits can

achieve close to 0% anomaly rates, anomalies from the

preamble can generate clusters and prevent the attack
from deploying. Sustained high locality frame counts

from preambles enforces high delays hence increasing

the overall delay. Therefore, once the locality frame

rises above a certain value (e.g. if the locality frame

count rises to 120, the associated delays will be close

to 1035 seconds), pH and pHsm effectively freezes the
attack hence preventing the successful execution of the

exploit.

Furthermore, the best attacks according to delay

demonstrate that Pareto ranking allows EEG to dis-

cover exploits with shorter delays. For example, best

samba ‘black-box’ exploits against pHsm in Table 14

show that the attacker has the option to choose the
attack with 0.1 second delay over the attack with

3.88 × 1013 second delay, achieving a substantial gain

in exploit delays. However, one should note that the re-

sulting attacks (detailed in Table 15) indicate that the
anomalous samba preamble causes delays in the mag-

nitude of 7.95 × 1027 seconds regardless of the exploit

delay.

The delays associated with the attacks demonstrate

that the detector counter measure is clearly very ef-

fective. Even though the exploit achieves low anomaly

rates, it can be frozen effectively if the anomalies are
clustered together. In particular, ‘white-box’ attacks

generally produce low exploit delays yet the delays asso-

ciated with the corresponding attacks are expressed in

19

‘Black-box’ Attacks

pH pHsm

Target: Training conducted on Stide

traceroute 0.8 0.69

restore 1.90 × 1038 2.16× 1039

samba 7.95 × 1027 1.01× 1021

ftpd 5.26 × 1030 4.59× 1031

Target: Training conducted on pH

traceroute 6.39 × 106 (0.54) 3.52× 1011 (0.43)

restore 1.90 × 1038 (1.90 × 1038) 2.17× 1039 (2.17 × 1039)

samba 7.95 × 1027 (7.95 × 1027) 1.95× 1028 (1.95 × 1028)

ftpd 5.26 × 1030 (5.26 × 1030) 4.59× 1031 (4.59 × 1031)

Target: Training conducted on pHsm

traceroute 1.65 × 1035 (0.54) 1.65× 1035 (0.43)

restore 1.90 × 1038 (1.90 × 1038) 2.16× 1039 (4.04 × 1038)

samba 7.95 × 1027 (7.95 × 1027) 1.95× 1028 (1.59 × 1020)

ftpd 5.26 × 1030 (5.26 × 1030) 4.59× 1031 (1.98 × 1027)

Target: Training conducted on Markov Model

traceroute 3.17 × 1034 1.10× 1034

restore 1.90 × 1038 2.16× 1039

samba 7.95 × 1027 1.95× 1028

ftpd 5.26 × 1030 4.59× 1031

Target: Training conducted on Neural Network

traceroute 2.23 × 1039 1.88× 1039

restore 7.01 × 1038 2.41× 1039

samba 9.48 × 1035 1.13× 1035

ftpd 5.58 × 1030 4.60× 1031

‘White-box’ Attacks

pH pHsm

Target: Exhaustive search conducted on Stide

traceroute 1.22 1.11

restore 1.90× 1038 4.33 × 1038

samba 7.95× 1027 1.01 × 1021

ftpd 5.26× 1030 7.84 × 1017

Target: Exhaustive search conducted on pH

traceroute 0.83 0.72

restore 1.90× 1038 4.33 × 1038

samba 7.95× 1027 1.01 × 1021

ftpd 5.26× 1030 7.84 × 1017

Target: Exhaustive search conducted on pHsm

traceroute 9.97× 104 4.85 × 107

restore 1.90× 1038 4.33 × 1038

samba 7.95× 1027 1.01 × 1021

ftpd 5.26× 1030 7.84 × 1017

Target: Exhaustive search conducted on Markov Model

traceroute 8.11× 1029 3.89 × 1032

restore 1.90× 1038 4.35 × 1038

samba 1.32× 1032 1.30 × 1032

ftpd 5.24× 1032 2.60 × 1031

Target: Exhaustive search conducted on Neural Network

traceroute 2.07× 1039 4.40 × 1038

restore 1.90× 1038 4.33 × 1038

samba 9.49× 1040 9.49 × 1040

ftpd 5.66× 1041 7.32 × 1038

Table 15 Delays (in seconds) of the ‘black-box’ and ‘white-box’ attacks (preamble plus exploit) tested on the Stide, pH, pHsm,
Markov Model and Neural Network detectors. The attack delays are categorized according to the target detectors. For pH and pHsm,
delays reported in brackets are for the best exploits optimizing the delay. All the other delay measurements are for the best exploits
optimizing the anomaly rate.

centuries. On the other hand, if delays associated with

locality frame counts will be employed in the real-world,

reducing the false positive for the detector deserves fur-
ther attention since legitimate behaviour, which is un-

known to the detector can cause substantial delays.

Figures 10 and 11 provide box plot analysis of ex-

ploit and attack delays, respectively. Since only pH and

pHsm reports delays, the box plots are provided only for

these detectors. In addition to showing the distribution
of exploit and attack delays, the box plot underlines

that pHsm is much more difficult to evade, a property

most likely due to the unknown parameterization of the

(pHsm) schema mask.

7 Conclusion

In this paper, we compare evasion attacks generated
by two assumptions: ‘white-box’ assumption – adopted

by the previous work – which assumes that the inter-

nal knowledge of the detector knowledge is present, and

‘black-box’ assumption – adopted by our work – which
assumes that only the output of the detector is accessi-

ble, which presents a more practical scenario. The ob-

jective of the analysis is to investigate how much ‘inter-

nal’ knowledge the attacker needs to deploy successful

attacks.

To do so, each attack (both ‘white-box’ and ‘black-

box) was deployed against different detector configura-

tions and the results were provided in terms of anomaly
rates, delays and exploit lengths. Evasion attacks gener-

ated by EEG provide anomaly rates comparable to the

anomaly rates of ‘white-box’ attacks although the ac-

cess to the detector is limited to the anomaly rate alone.

Such a ‘black-box’ assumption is particularly suitable if
the attacker does not posses internal knowledge of the

detector.

The results demonstrated that assuming a ‘black-

box’ approach where the access to the detector is lim-

ited to the detector output, EEG succeeds in reduc-

ing the anomaly rate of the attacks. While ‘white-box’

techniques produce lower anomaly rates on the exploit
alone, ‘black-box’ technique produces comparable at-

tack anomaly rates by generating longer exploits, which

reduce the anomalous effects of preambles. Although

assuming a ‘black-box’ access presents a substantially
more difficult problem, limiting the detector knowledge

to the ‘black-box’ level does not prevent the identifica-

tion of attacks, which are equally effective as a ‘white-

20

100

1010

1020

1030

pH pHsm

D
el

ay
 (S

ec
on

ds
)

(a) traceroute

1010

1020

1030

pH pHsm

D
el

ay
 (S

ec
on

ds
)

(b) restore

100

1010

1020

1030

pH pHsm

D
el

ay
 (S

ec
on

ds
)

(c) samba

100

1010

1020

1030

pH pHsm

D
el

ay
 (S

ec
on

ds
)

(d) ftpd

Fig. 10 Box plot analysis of ‘black-box’ exploit anomaly delays, plotted separately per application.

100

1010

1020

1030

pH pHsm

D
el

ay
 (S

ec
on

ds
)

(a) traceroute

1039

pH pHsm

D
el

ay
 (S

ec
on

ds
)

(b) restore

1020

1025

1030

1035

pH pHsm

D
el

ay
 (S

ec
on

ds
)

(c) samba

1015

1020

1025

1030

pH pHsm

D
el

ay
 (S

ec
on

ds
)

(d) ftpd

Fig. 11 Box plot analysis of ‘black-box’ attack anomaly delays with preamble, plotted separately per application.

21

box’ model for the same detector. Moreover, when a

‘white-box’ access is assumed, exhaustive search meth-

ods are customized per detector to be able to facilitate

an effective search, which implies the ‘white-box’ tech-

niques are very detector dependent. Thus, assuming a
‘black-box’ access extends the application of vulnerabil-

ity testing beyond the cases where internal knowledge of

the detector is required to custom-design a ‘white-box’

search per detector.

Our analysis indicated that evading anomaly detec-

tors can be more difficult than previously believed due

to attacker’s lack of control over the preamble com-

ponent; specifically, system calls that execute before

the exploit is deployed. While the previous work [35]
[33] [32] [12] [24] [14] reported anomaly rates on the

exploit alone without considering the anomaly rate of

the preamble, our results demonstrated that even if the

attacker can create an exploit with 0% anomaly rate,
the corresponding attacks, which included the anoma-

lies from the preamble, would be more than 0%. The

effects of preamble is magnified especially if the pream-

ble is long and anomalous, which also affects the delays.

We investigated whether the evasion attacks could
generalize to the detectors for which they are not tar-

geted. In other words, how likely is an attack trained

against one detector to remain undetected when de-

ployed against another detector? Thus, to answer this
question, as opposed to deploying the attacks only

against the detector on which they are generated, we

deployed the attacks against all five anomaly detec-

tors. The results indicated that, to a certain extent,

evasion attacks can produce low anomaly rates when
they are deployed against other detectors, especially if

the detection mechanism is similar and if the detec-

tor on which they are trained employed a longer slid-

ing window length than the detector on which they are
tested (e.g. attacks trained for pH deployed against the

Markov Model detector).

Additionally, as opposed to the previous work,

which reported anomaly rates alone, our experiments

reported the delays associated with the evasion attacks
and demonstrated that a delay associated with locality

frame counts can be an effective way to stop an attack.

Even if the attack achieves low anomaly rates, it can be

delayed by years, if the anomalies are sufficiently clus-

tered together. In particular, although both ‘black-box’
and ‘white-box’ techniques succeeded in producing at-

tacks with low anomaly rates, the delays are commonly

expressed in years and centuries. Therefore, by incor-

porating additional metrics such as the dispersion of
anomalies (using the locality frame count) in pH, the

detectors can be more robust against evasion attacks.

Nevertheless, should the delays be employed in real-

world, potential delays enforced on legitimate actions

can cause false alarms and deserve further investiga-

tion.

Acknowledgements The authors gratefully acknowledge the
support of SwissCom Innovations SA., Telecom and Research Al-
liance (TARA) Inc., Killam, Precarn, MITACS and Natural Sci-
ences and Engineering Research Council (NSERC) funding pro-
grams.

References

1. (Last accessed August 2010) Securityfocus vul-

nerability archives – lbnl traceroute heap corrup-
tion vulnerability. http://www.securityfocus.

com/bid/1739

2. (Last accessed August 2010) Securityfocus vul-

nerability archives – redhat linux restore insecure

environment variables vulnerability. http://www.
securityfocus.com/bid/1914

3. (Last accessed August 2010) Securityfocus vul-

nerability archives – samba ‘call trans2open’ re-

mote buffer overflow vulnerability. http://www.

securityfocus.com/bid/7294

4. (Last accessed August 2010) Securityfocus vul-

nerability archives – wu-ftpd remote format

string stack overwrite vulnerability. http://www.

securityfocus.com/bid/1387

5. (Last accessed August 2010) Stide website – source

code of stide and system call data sets. http://

www.cs.unm.edu/~immsec/systemcalls.htm

6. Banzhaf W, Francone FD, Keller RE, Nordin P
(1998) Genetic programming: an introduction: on

the automatic evolution of computer programs and

its applications. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA

7. Baum LE, Petrie T, Soules G, Weiss N (1970) A
maximization technique occurring in the statistical

analysis of probabilistic functions of markov chains.

The Annals of Mathematical Statistics 41(1):164–

171, DOI 10.2307/2239727
8. Bishop CM (1995) Neural Networks for Pattern

Recognition. Oxford University Press, Inc., New

York, NY, USA

9. Chambers JM, Cleveland WS, Tukey PA (1983)

Graphical methods for data analysis. Wadsworth
10. Deb K (2001) Multi-Objective Optimization using

Evolutionary Algorithms. John Wiley and Sons

11. Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA

(1996) A sense of self for unix processes. In: SP ’96:
Proceedings of the 1996 IEEE Symposium on Se-

curity and Privacy, IEEE Computer Society, Wash-

ington, DC, USA, p 120

22

12. Gao D, Reiter MK, Song D (2004) Gray-box ex-

traction of execution graphs for anomaly detec-

tion. In: CCS ’04: Proceedings of the 11th ACM

conference on Computer and communications se-

curity, ACM, New York, NY, USA, pp 318–329,
DOI http://doi.acm.org/10.1145/1030083.1030126

13. Gao D, Reiter MK, Song D (2006) Behavioral dis-

tance measurement using hidden markov models.

In: Proceedings of the 9th International Sympo-
sium on Recent Advances in Intrusion Detection -

RAID, Lecture Notes in Computer Science, LNCS

4219, pp 19–40

14. Giffin JT, Jha S, Miller BP (2006) Automated dis-

covery of mimicry attacks. In: Recent Advances in
Intrusion Detection, 9th International Symposium,

RAID 2006, Springer, Lecture Notes in Computer

Science, vol 4219, pp 41–60

15. Inoue H, Somayaji A (June 2007) Lookahead pairs
and full sequences: A tale of two anomaly detection

methods. In: Proceedings of the 2nd Annual Sym-

posium on Information Assurance (Academic track

of the 10th NYS Cyber Security Conference), pp

9–19
16. Japkowicz N, Myers C, Gluck M (1995) A novelty

detection approach to classification. In: Proceed-

ings of the Fourteenth Joint Conference on Artifi-

cial Intelligence, pp 518–523
17. Kang DK, Fuller D, Honavar V (2005) Learning

classifiers for misuse and anomaly detection using a

bag of system calls representation. Information As-

surance Workshop, 2005 IAW ’05 Proceedings from

the Sixth Annual IEEE SMC pp 118–125, DOI
10.1109/IAW.2005.1495942

18. Kayacık HG (2009) Can the best defense be a good

offense? evolving (mimicry) attacks for detector

vulnerability testing under a black-box assumption.
PhD thesis, Dalhousie University

19. Kayacık HG, Zincir-Heywood AN (2008) Mimicry

attacks demystified: What can attackers do to

evade detection? In: PST ’08: Proceedings of the

2008 Sixth Annual Conference on Privacy, Security
and Trust, IEEE Computer Society, Washington,

DC, USA, pp 213–223, DOI http://dx.doi.org/10.

1109/PST.2008.25

20. Kayacık HG, Heywood M, Zincir-Heywood N
(2006) On evolving buffer overflow attacks using

genetic programming. In: Proceedings of the Con-

ference on Genetic and Evolutionary Computation

(GECCO), SIGEVO, ACM, pp 1667–1674

21. Kayacık HG, Heywood M, Zincir-Heywood N
(2007) Evolving buffer overflow attacks with detec-

tor feedback. In: Proceedings of the EvoWorkshops

(EvoCOMNET), Springer, LNCS, vol 4448, pp 11–

20

22. Kayacık HG, Zincir-Heywood AN, Heywood M,

Burschka S (2009) Optimizing anomaly detector

deployment under evolutionary black-box vulner-

ability testing. In: Computational Intelligence for
Security and Defense Applications, 2009. CISDA

2009. IEEE Symposium on, pp 1 –8, DOI 10.1109/

CISDA.2009.5356546

23. Kramer MA (1991) Nonlinear principal compo-
nent analysis using autoassociative neural net-

works. AIChE Journal pp 233–243

24. Kruegel C, Kirda E, Mutz D, Robertson W, Vigna

G (2005) Automating mimicry attacks using static

binary analysis. In: SSYM’05: Proceedings of the
14th conference on USENIX Security Symposium,

USENIX Association, Berkeley, CA, USA, pp 161–

176

25. Kumar R, Rockett P (2002) Improved sampling
of the pareto-front in multiobjective genetic opti-

mizations by steady-state evolution: a pareto con-

verging genetic algorithm. Evolutionary Compu-

tation 10(3):283–314, DOI http://dx.doi.org/10.

1162/106365602760234117
26. Lee J, Cho S, Baek J (2003) Trend detection using

auto-associative neural networks: Intraday kospi

200 futures. Computational Intelligence for Finan-

cial Engineering, 2003 Proceedings 2003 IEEE In-
ternational Conference on pp 417–420, DOI 10.

1109/CIFER.2003.1196290

27. Manevitz L, Yousef M (2007) One-class docu-

ment classification via neural networks. Neurocom-

put 70(7-9):1466–1481, DOI http://dx.doi.org/10.
1016/j.neucom.2006.05.013

28. Sekar R, Bendre M, Dhurjati D, Bollineni P

(2001) A fast automaton-based method for detect-

ing anomalous program behaviors. In: SP ’01: Pro-
ceedings of the 2001 IEEE Symposium on Security

and Privacy, IEEE Computer Society, Washington,

DC, USA, p 144

29. Somayaji AB (2002) Operating system stability

and security through process homeostasis. PhD
thesis, The University of New Mexico, chairperson:

Stephanie Forrest

30. Tan KMC, Maxion RA (2002) ”why 6?” defining

the operational limits of stide, an anomaly-based
intrusion detector. In: SP ’02: Proceedings of the

2002 IEEE Symposium on Security and Privacy,

IEEE Computer Society, Washington, DC, USA, p

188

31. Tan KMC, Maxion RA (2003) Determining the op-
erational limits of an anomaly-based intrusion de-

tector. Selected Areas in Communications, IEEE

Journal on 21(1):96–110, DOI 10.1109/JSAC.2002.

23

806130

32. Tan KMC, Killourhy KS, Maxion RA (2002) Un-

dermining an anomaly-based intrusion detection

system using common exploits. In: Proceedings of

the 5th International Symposium on Recent Ad-
vances in Intrusion Detection - RAID, Lecture

Notes in Computer Science, LNCS 2516, pp 54–73

33. Tan KMC, McHugh J, Killourhy KS (2003) Hid-

ing intrusions: From the abnormal to the normal
and beyond. In: IH ’02: Revised Papers from the

5th International Workshop on Information Hiding,

Springer-Verlag, London, UK, pp 1–17

34. Vigna G, Robertson W, Balzarotti D (2004) Test-

ing network-based intrusion detection signatures
using mutant exploits. In: CCS ’04: Proceedings

of the 11th ACM conference on Computer and

communications security, ACM, New York, NY,

USA, pp 21–30, DOI http://doi.acm.org/10.1145/
1030083.1030088

35. Wagner D, Soto P (2002) Mimicry attacks on host-

based intrusion detection systems. In: CCS ’02:

Proceedings of the 9th ACM conference on Com-

puter and communications security, ACM, New
York, NY, USA, pp 255–264, DOI http://doi.acm.

org/10.1145/586110.586145

