
Evolving Buffer Overflow Attacks with Detector
Feedback

Author identities withheld

No Institute Given

Abstract. A mimicry attack is an exploit in which basic behavioral
objectives of a minimalist ’core’ attack are used to design multiple at-
tacks achieving the same objective from the same application. Research
in mimicry attacks is valuable in determining and eliminating detector
weaknesses. In this work, we provide a process for evolving all compo-
nents of a mimicry attack relative to the Stide (anomaly) detector under
a Traceroute exploit. To do so, feedback from the detector is directly
incorporated into the fitness function, thus guiding evolution towards
potential blind spots in the detector. Results indicate that we are able
to evolve mimicry attacks that reduce the detector anomaly rate from
~67% of the original core exploit, to less than 3%, effectively making the
attack indistinguishable from normal behaviors.

1 Introduction

Our objective is to develop an automated process for building “white-hat” attack-
ers within a mimicry context [1,2,3,4]. By ’mimicry’ we assume the availability
of the ’core’ attack, where this establishes a series of behavioral objectives as-
sociated with the exploit [5,6]. The goal of the automated white hat attacker
will therefore be to establish as many specific attacks corresponding to the ex-
ploit associated with the ’core’ attack as possible. Candidate mimicry attacks
will take the form of system call sequences that can avoid detection or at least
minimize the anomaly rate at the corresponding detector. By “white hat”, we
imply that the underlying objective is to use the attacks to improve the design
of corresponding detectors.

Previous research has established the suitability of evolutionary computation
as an appropriate process for automating the parameterization of buffer over-
flow attacks [5], and for designing a generic buffer overflow attack itself [6]. In
this work, we extend the approach to explicitly incorporate feedback from the
anomaly detector. Moreover, previous instances of evolved attacks were designed
within the context of a virtual vulnerability and verified against the Snort (signa-
ture based) detector post training [5,6]. Conversely, this work provides attacks
that are specific to a real application vulnerability under the more advanced
behavioral anomaly detection paradigm. To do so, evolution is guided towards
attacks that are able to make use of unforeseen weaknesses in the detector,
thus providing the basis for improvements in detector design (vulnerability test-
ing). Relative to earlier works on mimicry attack generation (against behavioral



anomaly detectors) [1,2,3,4], the adoption of an evolutionary approach to de-
signing attacks demonstrates that it is no longer necessary to rely on privileged
detector information to establish valid attacks. As such, we believe that the en-
suing attacks are more reflective of vulnerabilities that are likely to be developed
by a "would be" attacker in practice.

In the following we detail the process used to configure the anomaly detec-
tor, and characterize the vulnerable application, Section 2, before introducing
the evolutionary mimicry attack framework, Section 3. Results are presented in
Section 4, in which attacks are successfully designed with anomaly rates less
than three percent; in effect making them indistinguishable from normal behav-
ior. Moreover, specific recommendations are made regarding the construction of
appropriate search operators. Conclusions are drawn in Section 5, with the case
made for the coevolution of (white hat) attacks and detectors.

2 Detector and Vulnerable Application

The general goal of this work is to demonstrate that real (white hat) exploits
may be developed under an evolutionary computation paradigm given a mimicry
attack model. To be of relevance to vulnerability testing of a specific detector,
behavioral goals of an exploit are augmented with feedback from the detector
itself. Thus, for vulnerabilities to exist in the detector we aim to evolve pro-
grams that provide the desired exploit whilst minimizing the detector anomaly
rate. Unlike previous work on mimicry attack generation, no inside knowledge
is utilized in identifying weaknesses in the detector [1,2,3,4]. With these general
guidelines in mind, we first provide the background to the detector on which
vulnerability testing will be conducted, introduce the configuration process, and
establish how a successful attack will be recognized.

2.1 Anomaly Detector

Anomaly detection systems attempt to build models of normal user behavior
and use this as the basis for detecting suspicious activities. This way, known
and unknown (i.e. new) attacks can be detected as long as the attack behavior
deviates sufficiently from the normal behavior. Needless to say, if the attack is
sufficiently similar to the normal behavior, it may not be detected. However, user
behavior itself is not constant, thus even the normal activities of a user may raise
alarms. In this work, Stide was used as the target anomaly detector [7]; where a
wide range of related research performed in vulnerability or penetration testing
has employed Stide on the basis of it’s open source availability and behavioral
approach to anomaly detection [1,2,3,4]. That is to say, rather than taking the
’signature’ based approach to detection1, the behavioral methodology develops
a model for normal behavior for specific services using a priori supplied system

1 Where evading signature based detectors using mimicry methods is already consid-
ered straightforward [1].



call(s). As such the ensuing detector does not require a direct match between
modeled behavior and an attack for recognition to take place (as per a ’sig-
nature’ based detector), but returns a percent anomaly rate. The user is then
free to interpret the anomaly rate as representing an attack or not (typically by
specifying a threshold). It is this anomaly rate that will be used to guide the
evolutionary process towards any weaknesses in the detector. Section 2.2 details
how Stide was configured within the context of the vulnerable application.

2.2 Vulnerable Application and Configuration of Stide

In the following, Traceroute is employed as the vulnerable application. Tracer-
oute is used to determine the routing path between a source and destination
by sending a set of control packets to the destination with increasing time-to-
live values. A typical use of traceroute involves providing the destination IP,
whereas the application returns information on the route taken between source
and destination.

Redhat 6.2 was shipped with Traceroute version 1.4a5, where this is suscep-
tible to a local buffer overflow exploit that provides a local user with super-user
access [8]; hereafter the ’core’ attack. The attack exploits a vulnerability in mal-
loc chunk, and then uses a debugger to determine the correct return address to
take control of the program. As indicated above, an anomaly detector is used in
conjunction with a threshold (anomaly rate) such that detection and false pos-
itive rates are optimized. The objective of the attacker is to build attacks that
return anomaly rates below the threshold characterizing normal behavior. One
approach to establishing a safe detector threshold might be to set the threshold
to zero. However, this would result in far too many false positive alarms. That
is to say, in practice, the normal behavior model of the detector cannot cover
all possible user scenarios, as configuration is only conducted over a subset of
behavioral traces. However, we also note that the available configurations of the
Traceroute application is also limited; thus only a small number of use cases
are sufficient to provide a complete set of system call sequences to characterize
normal behavior2. In this we consider two scenarios. Scenario 1 configures Stide
using a single use case, the ’nist’ domain, as per previous research in mimicry
research [1,2,3,4]. The principle motivation being that if attacks can be designed
against a minimalist Stide configuration, then designing attacks for a typical
configuration will be easier. Scenario 2 configures Stide using 5 use cases, as
follows: search engines; local servers; a non existent host; the local host; and
the application help screen. The motivation in this case being that an attacker
would not have access to the database of normal behaviors that Stide uses to
characterize normal behavior, an assumption made by all the aforementioned
works on mimicry attack generation. Thus, establishing whether a detector can
be defeated under a typical configuration and without access to the internal
detector data structures is also of practical interest.

2 Stide builds a behavioral model based on system call sequences alone; no use is made
of arguments, thus avoiding any sensitivity to specific system call parameters [7].



3 Evolutionary Framework for Mimicry Attack
Generation

The case for using evolutionary computation in a mimicry attack context has
previously been made with respect to: the utility of code bloat for obfuscation
of malicious code; freedom in defining fitness functions most appropriate to the
application domain; and solutions taking the direct form of the attack itself [6].
However, the feasibility of evolving attacks was previously established in terms
of a hypothetical application, and did not incorporate the detector in any way.
As a consequence, vulnerability testing is only appropriate under a signature
based detection paradigm.

Behavioral based anomaly detectors are configured with respect to specific
applications. Thus, vulnerability testing is also carried out with respect to a
specific (vulnerable) application. The first step of our framework for evolving
attacks against such behavioral detectors is to identify an instruction set that is
not likely to be immediately recognized as anomalous by the detector. Secondly,
a fitness function needs crafting that focus on the relevant behavioral proper-
ties of the ’core’ exploit (Traceroute in this case). Finally, we need to define
the mechanism for integrating both the behavioral components and the detec-
tor feedback into an overall fitness function. Subsections 3.1 and 3.2 detail the
framework used to address these points, with Subsection 3.3 summarizing the
evolutionary model employed in this work.

3.1 Identifying Instruction Set

In order to minimize the likelihood of the exploit being detected, we restrict the
instruction set from which attacks are evolved to those appearing in the target
application (Traceroute). Table 1 details the frequency of the top twenty system
calls executed by the Traceroute application. This accounts for over 90% of the
normal instruction set. The system calls used to construct attacks will therefore
consist of the top 15 from this list. Note that such an approach does not require
any knowledge of the detector. Establishing the system calls associated with the
application merely implies that a diagnostic tool3 is deployed to identify those
sent to the operating system by the vulnerable application during execution.

3.2 Fitness Function

The original attack contains a standard shellcode, which uses the execve system
call to spawn a UNIX shell upon successful execution. Since traceroute never uses
an execve system call (Table 1), the original attack can be easily detected. To
this end, we employ a different attack strategy by eliminating the need to spawn
a UNIX shell. Most programs typically perform I/O operations, in particular
open, write to / read from and close files. Table 1 demonstrates that traceroute
3 In this case the Strace diagnostic tool is employed,

http://sourceforge.net/projects/strace/



Table 1. Frequency of top 20 system calls.

System Call Occurence Frequency System Call Occurence Frequency
gettimeofday 220 16.73% mprotect 34 2.59%

write 142 10.8% socket 29 2.21%
mmap 113 8.59% recvfrom 28 2.13%
select 99 7.53% brk 27 2.05%
sendto 99 7.53% fcntl 26 1.98%
close 93 7.07% connect 20 1.52%
open 86 6.54% ioctl 15 1.14%
read 75 5.7% uname 14 1.06%
fstat 73 5.55% getpid 12 0.91%

munmap 49 3.73% time 10 0.76%

frequently uses open / write / close system calls. We therefore recognize that
performing the following three steps establish the goals of the original shell code
attack:

1. Open the UNIX password file (“/etc/passwd”);
2. Write a line, which provides the attacker a super-user account that can login

without a password;
3. Close the file.

The objective of the evolutionary search process is to discover a sequence of sys-
tem calls that perform the above three steps in the correct order (i.e. the attack
cannot write to a file that it has not opened) while minimizing the anomaly rate
from Stide. Hence the fitness function has two objectives: evolving successful
as well as undetectable attacks. In particular, the shellcode must contain the
following sequence of ’core’ components in order to conduct the exploit:

1. Contain open (“/etc/passwd”);
2. Contain write (“toor::0:0:root:/root:/bin/bash”)4;
3. Contain close (“/etc/passwd”);
4. Execute close after write and open before write;
5. When the system call sequence is fed to Stide, anomaly rate should be as

low as possible.

This leads to the final composition of the fitness function, Algorithm 1. A total of
5 ’points’ are awarded for establishing the above components of the ’core’ attack.
A further 5 ’points’ are awarded for minimizing the anomaly rate provided by
the Stide detector. A perfect individual would therefore have a fitness of ’10’.

4 Creates a user ’toor’ with super-user privileges, who can connect remotely without
supplying a password.



Algorithm 1 Generic Fitness Function
1. Fitness = 0;

(a) IF ({open(′/etc/passwd′)} ∈ sequence)THEN (Fitness += 1);
(b) IF ({write(′toor :: 0 : 0 : root : /root : /bin/bash′)} ∈ sequence) THEN (Fit-

ness += 1);
(c) IF ({close(′/etc/passwd′)} ∈ sequence) THEN (Fitness += 1);
(d) IF (′open′ precedes ′write′) THEN (Fitness += 1);
(e) IF (′write′ precedes ′close′) THEN (Fitness += 1);
(f) Fitness+ = 100−Anomaly Rate

20

3.3 Evolutionary Model

Table 2 defines the instruction set architecture (and parameter types) as per the
earlier analysis of application behavior; thus the instruction set consists of the
fifteen most frequently occurring system calls characterizing normal behavior,
Table 1. Individuals are defined using a fixed length format, with solutions taking
the form of sequences of system calls. No registers are required to store state,
thus, strictly speaking, this is a Genetic Algorithm as opposed to a (linear)
Genetic Program.

Search operators are used independently (children result from any combina-
tion of the three operators) and take three forms: crossover, instruction mutation,
and instruction swap, Table 3. Crossover takes the form of single point crossover,
with the same crossover point utilized in both individuals. The swap operator
selects two instructions from the same individual with equal probability and
interchanges their respective positions; thus providing the basis to investigate
different permutations of the same instructions. In the case of mutation, three
forms are investigated.

– Individual-wise mutation: selects a single instruction with uniform probabil-
ity and replaces it with a different instruction from the instruction set, again
chosen with uniform probability.

– Instruction-wise mutation: tests each instruction independently for the ap-
plication of the mutation operator. Following a positive test, the instruction
is again replaced with another from the instruction set (uniform probability).

– Greedy mutation: the current best case individual is selected and the single
best one instruction modification accepted. This implies that all 14 alterna-
tive instructions are evaluated at each instruction position. Given the com-
putational cost of accessing such an operator the test is only applied every
1,000 tournaments.

In the case of the individual-wise and instruction-wise mutation operators, a
linear annealing schedule is employed such that at the last tournament, the mu-
tation probability is zero, decaying linearly with increasing tournament count.
The basic motivation being to enable the crossover operator to investigate dif-
ferent contexts of population material as the tournaments advance.



The selection operator takes the form of a steady state tournament, thus the
population is inherently elitist with the best individuals always surviving.

Table 2. Instruction Set

System Call Parameter 1 Parameter 2
open {”/etc/passwd”, “/tmp/dummy”} n/a
close {”/etc/passwd”, “/tmp/dummy”} n/a
read {”/etc/passwd”, “/tmp/dummy”} 4 byte space address

write {”/etc/passwd”, “/tmp/dummy”} {“toor::0:0:root:/root:/bin/bash”,
“Hello, world!”}

other n/a n/a

Table 3. Parameters for Evolutionary Search

Parameter Value
Population 500
Crossover 0.9

Mutation (individual wise) 0.5 with linear decay
Mutation (instruction wise) 0.001 with linear decay

Greedy Mutation Every 1 000 tournaments
Swap 0.5

Tournament Size 4
Stop Criterion 100 000 tournaments

4 Experiments

We begin by establishing the anomaly rate for the original ’core’ attack [8] on
the two use cases used to configure Stide. This defines the minimum perfor-
mance for any attack we evolve. Both configurations return an anomaly rate
of approximately 65%; thus in order for evolved mimicry attacks to represent
an improvement over the original attack, they should return an anomaly rate
significantly lower than this.

The principle evolutionary parameter of interest in this work is the signif-
icance of the mutation operators employed. To this end, three scenarios are
considered of increasing complexity: Individual-wise mutation; Instruction-wise
mutation; Instruction-wise mutation with greedy mutation. In all three cases
both crossover and swap operators appear, Table 3. Figures 1 and 2 detail the
corresponding percent anomaly rate over 10 runs for Stide configured under sce-
nario 1 (a single use trace) and scenario 2 (five use traces) respectively. For
completeness we also summarize the anomaly rate of best case attacks, Table 4.



Fig. 1. Anomaly rate of attacks evolved against Stide configured over scenario 1 use
case ’nist’.

Fig. 2. Anomaly rate of attacks evolved against Stide configured over scenario 2 use
case "all five".



It is immediately apparent that augmenting the search operators with in-
creasingly sophisticated mutation operators results in a direct improvement to
the median anomaly rate of the associated evolved exploits. Moreover, it is also
apparent that although configuring Stide using a single use case represents a
more difficult problem, all attacks returned a lower anomaly rate than the orig-
inal core attack. The principle difference between the two use case scenarios
appear to be manifest in the degree of variation in attack anomaly rates, with
the more difficult scenario resulting in a lower variance in anomaly rates. How-
ever, there is very little variation in best case attack anomaly rates, with all
search operator combinations returning attacks with anomaly rates lower than
4% under Stide configured with 5 use cases, and less than 6.5% anomaly rate
under Stide configured using a single use case.

Table 4. Percent anomaly rate of best case attacks evolved.

Stide Instruction-wise Instruction-wise Individual-wise
Configuration and Greedy Mutation Mutation Mutation
all 5 use cases 2.11% 2.97% 3.81%

single ’nist’ use case 6.36% 2.97% 5.08%

5 Conclusion

In this work, we developed an evolutionary mimicry attack approach to perform
vulnerability testing on the well known Stide host based anomaly detector whilst
treating the detector as a black box. That is to say, unlike previous approaches
to mimicry attack generation, information from the detector is limited to that
available to a “would be” attacker. Specifically, no use is made of privileged
data structures internal to the detector. This means that the only feedback em-
ployed from the detector during the evolution of attacks is the detector anomaly
rate, where this constitutes open information available to users as part of detec-
tor deployment. Conversely, previous approaches to mimicry attack generation
have concentrated on reverse engineering the normal behavior database from
the detector using an exhaustive search [1,2,3,4]. Such an approach would not
be feasible without access to privileged information.

A central theme in the approach is the utilization of a Genetic Algorithm to
actually automate the process of malicious code design. To do so, a framework
is utilized in which specific emphasis is placed on the: (i) Identification of an ap-
propriate set of system calls from which exploits are built, in this case informed
by the most frequently executed instructions from the vulnerable application.
(ii) Identification of appropriate goals, where these take two basic forms, mini-
mization of detector anomaly rate, whilst matching key steps in establishing the
’core’ exploit. (iii) Support for obfuscation, where in this case this is a direct side
effect of the stochastic search operators inherent in an evolutionary search. (iv)



Search operators benefit from instruction wise mutation and an anealing scheme.
Inclusion of a greedy instruction wise mutation operator is also beneficial, but
expensive computationally on account of the number of fitness evaluations nec-
essary to resolve a single application of the operator.

Future work will investigate the optimization of search operators for identi-
fying detector blind spots more effectively than is currently the case. Moreover,
we are interested in integrating attack evolution into a co-evolutionary context.
That is to say, coevolution of attack-detector pairs will enable attacks previously
unseen in the environment to be encountered and appropriate responses evolved
on a continuous basis. A pre-requisite for such a system, however, requires the
development of an evolutionary detection paradigm based on one-class training.
Specifically, in order to avoid the issue of finding an appropriate characteriza-
tion of normal behavior (an exceptionally difficult task, that typically results in
system specific solutions) we recommend the utilization of classifiers trained on
attack data alone. Such a class of classifier has been demonstrated using SVMs,
but is still outstanding within an evolutionary computation context.

Acknowledgments

Acknowledgments to appear here.

References

1. D. Wagner and P. Soto, Mimicry attacks on host based intrusion detection systems,
ACM Conference on Computer and Communications Security, pp. 255-264, 2002.

2. Tan, K.M.C., Killourhy, K.S., Maxion, R.A., Undermining an Anomaly-based Intru-
sion Detection System using Common Exploits, RAID’2002, LNCS 2516, pp 54-73,
2002.

3. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, Automating mimicry
attacks using static binary analysis, Proceedings of the USENIX Security Sympo-
sium, pp. 717-738, 2005.

4. K. M. C. Tan, John McHugh, Kevin S. Killourhy, Hiding Intrusions: From the
Abnormal to the Normal and Beyond, Symposium on Information Hiding, pp. 1-17,
2002.

5. H.G. Kayacik, A.N. Zincir-Heywood, M.I. Heywood, Evolving Successful Stack
Overflow Attacks for Vulnerability Testing, 21st Annual Computer Security Ap-
plications Conference, pp. 225-234, 2005.

6. H.G. Kayacik, M.I. Heywood, A.N. Zincir-Heywood. On Evolving Buffer Overflow
Attacks using Genetic Programming. Proceedings of the Genetic and Evolutionary
Computation Conference, SIGEVO, Volume 2, ACM Press, 1667-1673, July 8-12,
2006.

7. University of New Mexico, Computer Science Department, Computer Immune
Systems Data Sets and Software, http://www.cs.unm.edu/~immsec/data-sets.htm,
Last accessed May 2006.

8. Securiteam Web Site, Linux Traceroute Exploit Code Released (GDB), Oct
2002, http://www.securiteam.com/exploits/6A00A1F5QM.html, Last accessed
May 2006.


