Testing Detector Parameterization using
Evolutionary Exploit Generation

H.G. Kayacik, A.N. Zincir-Heywood, M.I. Heywood, S. Burschka

Faculty of Computer Science, Dalhousie University.

6050 University Avenue, Halifax NS, B3H 1W5, Canada
Software & Security Technologies, Swisscom Innovations, Switzerland
{kayacik, zincir, mheywood}@cs.dal.ca
Stefan.Burschka@swisscom.com

Abstract. The testing of anomaly detectors is considered from the per-
spective of a Multi-objective Evolutionary Exploit Generator (EEG).
Such a framework provides users of anomaly detection systems two ca-
pabilities. Firstly, no knowledge of protected data structures need be
assumed. Secondly, the evolved exploits are then able to demonstrate
weaknesses in the ensuing detector parameterization. In this work we fo-
cus on the parameterization of the second generation anomaly detector
‘pH’ and demonstrate how use of an EEG may identify weak parameter-
ization of the detector.

1 Introduction

Buffer overflow attacks represent one of the most effective and widespread ex-
amples of a host based attack. Detector techniques for recognizing such attacks
generally fall into two basic forms: misuse or anomaly. The misuse paradigm
focuses on recognizing the attack, whereas the anomaly paradigm concentrates
on modeling ‘normal’ behaviour and flags everything else as ‘anomalous.” Given
the ease with which current examples of misuse detection can be evaded [1],
we concentrate on the case of anomaly detection. Previous work on evolving
attacks has indicated that it is possible to evolve exploits against the original
Stide anomaly detector [2] when feedback from the detector is limited to the
(publicly available) alarm rate [3]. Moreover, such works only consider crafting
an exploit, without the preamble which set up the vulnerability such that the
exploit can be launched.

Unlike the original Stide anomaly detector, the second generation process
Homeostasis (pH) model of anomaly detection both detects and instigates counter
measures against suspicious processes [4]. Detection is performed relative to se-
quences of system calls made by an application and processes with above normal
anomaly rates receive a corresponding exponentially weighted delay. The goal of
this work is to perform a vulnerability assessment of the pH anomaly detector
under a vulnerable UNIX application using a black box approach. Specifically,
the only detector information used to ‘guide’ the search for better exploits is
the alarm rate, where this is public information available to a user. Conversely,

in order to establish better criteria for EEG we make use of a Pareto multi-
objective fitness function. We demonstrate that such a framework presents users
with a wider characterization of the scope of potential vulnerabilities for a given
anomaly detector, as well as quantifying the impact of the detector parameter-
ization. Moreover, we explicitly include the impact of the preamble within the
evaluation, so that exploits are identified within context.

2 Methodology

We are interested in evolving buffer overflow attacks against pH where the de-
tector has the capacity to delay the process associated with suspicious system
call sequences. Moreover, given that an attack is composed from preamble and
exploit it would also be useful to reward the evolutionary exploit generator for
reducing anomaly rates associated with the attack as a whole as opposed to the
exploit alone. Given the multiple criteria associated with this task it is reason-
able to assume a Pareto framework for designing our exploit generator. Before
we do so, however, we first need to establish the basic components of the evolu-
tionary model; in particular the representation and model of deployment. To this
end we assume the framework established by Kayacik et al. [3] and summarize
this in Section 2.1. The design of the multi-criteria fitness function is considered
relative to the basic framework in Section 2.2.

2.1 Basic Evolutionary Exploit Generator

A basic framework for EEG under a black box detector assumption was consid-
ered to comprise of two basic steps [3]: identification of a representative set of
system calls, and design of the fitness function, as follows:

System Calls: It is necessary to a priori specify a set of instructions (system
calls) from which candidate exploits are built. The approach adopted by
Kayacik et al. was to first run the vulnerable application (not the anomaly
detector) under normal operation and then review the most frequently ex-
ecuted system calls during execution. That is to say, a diagnostic tool — in
this case Strace! — is deployed to establish the most frequent 20 system calls
of the application (accounts for upwards of 90 percent of the system call
utilization). It is these system calls that are used as the instruction set of
the evolutionary exploit generator.

Fitness Function: Two basic criteria were previously identified for guiding
evolution towards an effective attack: criteria for a valid attack, and quality
of the attack. Criteria for a valid attack assumed that the basic goal of a
buffer overflow exploit were to: open a file, write to the file, and close the file.
The file in question was the password file, where the arguments to the open-
write-close sequence established the specifics of the target file. Naturally,
the sequence of these three operations is significant. Thus, individuals were

! Strace can be downloaded from http://sourceforge.net/projects/strace; .

rewarded for both the instructions executed and the order of execution. In
the case of exploit quality, use was made of the anomaly rate returned by the
detector. Thus if the detector considered the instruction sequence anomalous
the ensuing penalty would be greater.

In the following we assume the same process for identifying the subset of
system calls to compose attacks. However, the criteria for designing the fitness
function will now assume an Evolutionary Multi-criteria Optimization (EMO)
model in order to address the increased functionality apparent in pH, but without
referring to knowledge of its operational features.

2.2 Evolutionary Multi-criteria Exploit Generator

In assuming an EMO basis for evolving exploits we naturally make use of the
method of Pareto ranking to combine multiple objectives into a single ‘scalar’
fitness function [5]. Specifically, a process of pairwise comparison is used to es-
tablish to what degree each individual is dominated by other individuals in the
population. Thus, one individual (A) is said to dominate another (B) iff A is
as good as B on all objectives and better than B on at least one. However, a
wide range of algorithms have been proposed to support such a rank based fit-
ness function [6]. In this work we assume the PCGA framework of Kumar and
Rockett [7]. Such a scheme avoids the need to support explicit measures of sim-
ilarity, where such schemes are generally employed to encourage diversity and/
or measure similarity in the population. Instead diversity is established care of
a steady-state style of tournament. Specifically, after the initial population is
ranked, parents are chosen using proportional selection and the ensuing children
ranked. The rank of the children is compared to that of the worst ranked indi-
viduals in the population. If the children have a better rank, then they over write
the (worst ranked) population members. Use of such a EMO model is necessary
in this work as it is not possible to establish distance information relative to the
original problem domain. That is to say, popular algorithms such as NSGA-II
and SPEA all make use of Euclidean based distance functions when building the
diversity metric (see for example [6]). In this work the representation takes the
form of system call sequences as opposed to points in multi-dimensional space,
thus precluding the application of such distance metrics.

Specific objectives measured to establish fitness of each individual under the
EMO model take the form of the following three generic objectives:

1. Attack Success: As established in Section 2.1 the basic functionality of the
attack is described in terms of an ‘open-write-close’ sequence of system calls,
with reward established for each of the three instructions and the relevant
order?. A behavioural success function gives a maximum of 5 points the
correct ‘open-write-close’ behaviour, Figure 1.

2 Relevant arguments are also considered, although pH does not consider them.

2. Anomaly Rate: Again as established in Section 2.1, the detector anomaly
rate represents the principle metric for qualifying the likely intent of a system
call sequence; a would be attacker naturally wishes to minimize the anomaly
rate of the detector. Again, no inside knowledge is necessary as detectors
provide alarm rates as part of their normal mode of operation. Moreover,
as indicated in the introduction, the attacker also needs to minimize the
anomaly rate of the exploit. We evolve exploit with preamble appended to
facilitate identification of the most appropriate content.

3. Attack Length: Attack length appears as an objective to encourage evolution
to perform a wider search for solutions.

Count = 0;

IF (sequence contains open(“/etc/passwd)) THEN (Count++)

IF (sequence contains write(“toor::0:0:root: /root:/bin/bash”)) THEN (Count+-+)
IF (sequence contains close(“/etc/passwd”)) THEN (Count++)

IF (‘open’ precedes ‘write’) THEN (Count++)

IF (‘write’ precedes ‘close’) THEN (Count++)

S Uk L

Fig. 1. Fitness objective quantifying the exploit functionality.

3 Results

3.1 pH detector Configuration

pH is a second generation anomaly detector in which specific instances of the
detector are associated with each application. During training, pH employs a
sliding window to establish the normal behaviour of the application in terms
of a matrix with dimensions: (1) current system call; (2) previous system call;
(3) location of the previous system call in the sliding window. During testing,
the same sliding window is employed on the candidate exploits. If a given sliding
window sequence produced a look ahead pair that is not in the normal database,
a mismatch is recorded. Given a pre-specified window size and system call trace
length, the anomaly rate for the trace is calculated by dividing the number of
mismatches by the total number of look ahead pairs. Moreover, the delay prop-
erty used by pH to penalize suspicious processes is calculated as an exponential
function of locality frame count; where locality frame (LF) count aims to iden-
tify clusters of anomalies. In this work, the default pH training parameters were
employed, as defined by Somayaji [4].

3.2 Traceroute Application Configuration

In the following experiments, traceroute is tested. Traceroute is a vulnerable
application frequently used in the attack automation literature [8]. Traceroute is

a network diagnosis tool, which is used to determine the routing path between
a source and destination by sending a set of control packets to the destina-
tion with increasing time-to-live values. Redhat 6.2 is shipped with Traceroute
version 1.4a5, where this is susceptible to a local buffer overflow exploit that
provides a local user with super-user access [9]. In order to establish traceroute
behavior under normal conditions we developed five use cases: (1) targeting a
remote server, (2) targeting a local server, (3) targeting a non-existent server,
(4) targeting the localhost, (5) help screen.

3.3 Performance Evaluation

Each run of the EEG may provide up to 500 exploits. In the following analysis,
we concentrate on the non-dominated performance characteristics as captured
post training. Specifically, this will take the form of three properties: anomaly,
sequence length, and delay. By way of a baseline we also include the performance
of the original attack. Table 1 details the characteristics of the non-dominated
attacks under the Traceroute application. The last row details the characteristics
of the original attack. It is apparent that the anomaly rate of the overall attack
can be significantly reduced. In terms of attack and exploit delays, the attack that
achieves the least delay achieves this by deploying a short exploit, hence reducing
the delay from 6.39E+06 to 0.55 seconds. Naturally, this is only achieved while
doubling the anomaly rate of the attack (from 16.29% to 30.91%).

Table 1. Non-dominated characteristics of Attacks against Traceroute application.

Optimization Attack Exploit |Length| Attack Exploit
Criteria |Anomaly (%)|Anomaly (%) Delay (sec)|Delay (sec)
Anomaly rate 18.29 11.71 118 | 6.39 e+6 1.11
Delay 30.91 100 9 0.55 0.02
Length 65.11 66.77 1,000 | 3.83 e+28 | 3.75 e+28
Original 66.27 73.91 261 | 4.39 e+35 | 4.39 e+35

4 Conclusion

A second generation anomaly detection system — pH — is assessed for effective-
ness under a black box information criterion. To do so, a multi-objective model
of EEG is employed. Such an approach enables us to determine the cross-section
of (non-dominated) behaviours evolved post training. It is clear that the pream-
ble plays a very significant role in establishing the effectiveness of the overall
attack. The parameterization of pH is a tradeoff between collecting statistics
over longer window sizes and establishing a good model for normal behaviour

versus detection of very short attacks. Under Traceroute the low system call
count of the preamble enables the configuration of attacks that on the one hand
register a high anomaly rate, yet escape the delay property of pH. Specifically,
the total system call count for the evolved attack is 91, thus smaller than the
locality frame window size of 128. Moreover, the exploit alone required 9 system
calls (100 percent anomaly); thus, the use of a Pareto multi-objective model of
evolution enabled us to discover that such an attack could still be very effective.
Thus, the would-be attacker would have compromised the system before an ad-
ministrator could have reacted to the alarm. From the perspective of the overall
vulnerability analysis the EEG enables us to optimize the detector parameteri-
zation.

Acknowledgements

The authors gratefully acknowledge the support of SwissCom Innovations, MI-
TACS, CFI and NSERC grant programs.

References

1. Kayacik, H.G., Heywood, M., Zincir-Heywood, N.: On evolving buffer overflow
attacks using genetic programming. In: Proceedings of the Conference on Genetic
and Evolutionary Computation (GECCO), SIGEVO, ACM (2006) 1667-1674

2. Forrest, S., Hofmeyr, S.A., Somayaji, A.B., Longstaff, T.A.: A sense of self for unix
processes. In: Proceedings of the IEEE Symposium on Security and Privacy. (1996)
120-128

3. Kayacik, H.G., Heywood, M., Zincir-Heywood, N.: Evolving buffer overflow attacks
with detector feedback. In: Proceedings of the EvoWorkshops (EvoCOMNET).
Volume 4448 of LNCS., Springer (2007) 11-20

4. Somayaji, A.B.: Operating system stability and security through process homeosta-
sis. PhD thesis, The University of New Mexico (2002)

5. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison Wesley (1989)

6. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
and Sons (2001)

7. Kumar, R., Rockett, P.: Improved sampling of the pareto-front in multiobjective
genetic optimizations by steady-state evolution. Evolutionary Computation 10(3)
(2002) 283-314

8. Tan, K., Killourhy, K., Maxion, R.: Undermining an anomaly-based Intrusion De-
tection System using common exploits. In: Recent Advances in Intrusion Detection
Systems (RAID). Volume 2516 of LNCS. (2002) 54-73

9. SecurityFocus: Lbnl traceroute heap corruption vulnerability.
http://www.securityfocus.com/bid/1739 (Last accessed June 2008)

