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Abstract—An approach to network intrusion detection is
investigated, based purely on a hierarchy of Self-Organizing
Feature Maps. Our principle interest is to establish just how
far such an approach can be taken in practice. To do so, the
KDD benchmark dataset from the International Knowledge
Discovery and Data Mining Tools Competition is employed.
This supplies a connection-based description of a factitious
computer network in which each connection is described in
terms of 41 features. Unlike previous approaches, only 6 of the
most basic features are employed. The resulting system is
capable of detection (false positive) rates of 89% (4.6%),
where this is at least as good as the alternative data-mining
approaches that require all 41 features.

Index terms—Intrusion Detection Systems, Self-Organizing
Feature Map.

1. INTRODUCTION

The Internet, as well as representing a revolution in the
ability to exchange and communicate information, has also
provided greater opportunity for disruption and sabotage of
data previously considered secure. The study of systems
able to detect network borne intrusions provides many
challenges. Classical network based approaches to this
problem often rely on either rule-based misuse detection or
anomaly detection [1]. Rule-based misuse detection systems
attempt to recognize specific behaviors that represent known
forms of abuse or intrusion. On the other hand, anomaly
detection attempts to recognize abnormal user behavior.
Both approaches have their respective advantages and
disadvantages. Rule based systems typically require an
exhaustive list of templates characterizing each attack
instance; there is no concept of similarity to a currently
listed attack instance. The anomaly detection approach will
actually identify “normal” behaviors by mining the
monitored behavior of each user so that “abnormal”
behaviors can be characterized. Clear distinctions between
normal and abnormal, however, are difficult to achieve in
practice.

Given the significance of the intrusion detection
problem, there have been various initiatives that attempt to
quantify the current state of the art. In particular the
International Knowledge Discovery and Data Mining Tools
Competition [2] provided the KDD-99 data set for assessing
different Al approaches to the problem. Although not
without its drawbacks [3], this benchmark provides the only
labeled dataset for comparing IDS systems, which the
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authors are aware of. The most recent works in this area are
able to provide detection (false positive) rates in the range of
91% (8%) to 98% (10%) whilst using all 41-connection
features [4, 5].

In this work, we are interested in establishing how far an
approach based on a sequence of hierarchical topological
maps can be taken, whilst only utilizing a sub-set of the
available 41-connection features. Specifically, the work only
uses the six “Basic features of an Individual TCP
connection” [2]. Six Self-Organizing Feature Maps (SOM)
are then built, one for each input feature. The second level
of the hierarchy integrates the information from each SOM
and a third layer is selectively built for second layer neurons
that respond to both attack and normal connections.
Neurons in the second and third layers are therefore labeled
using the training set, but the training process itself is
entirely unsupervised. Detection (false positive) rate of the
detector on the test set varies between 89% (4.6%) to 99.7%
(1.7%) depending on the KDD-99 test partition employed.

The remainder of the paper is organized as follows.
Section II provides the background and methodology of the
work. Details of each learning algorithm comprising the
system are given in Section III. Results are reported in
Section IV and Conclusions drawn in Section V.

II. METHODOLOGY

As indicated in the introduction, the basic objective of
this work is to assess how far a machine learning approach
may be taken which makes minimalist use of any a priori
domain knowledge. To this end, an approach based on
topological maps is employed. This assumes that given
sufficient resolution in the maps, it is possible to separate
normal from attack behavior. In a previous work, we
established that by utilizing a shift register to embed the
temporal relationship between incoming connections,
described in terms of session information, a simple two
layer SOM hierarchy was sufficient to distinguish between
different behaviors [6]. However, the dataset used in that
scheme only consisted of seven attacks. In this work, on the
other hand, we thoroughly benchmark the hierarchical SOM
methodology on the KDD-99 benchmark. To this end, we
first describe the characteristics of the data set and then the
SOM architecture utilized.

1) KDD dataset:

The KDD-99 dataset is based on the 1998 DARPA
initiative to provide designers of intrusion detection
systems (IDS) with a benchmark on which to evaluate
different methodologies [7]. To do so, a simulation is made
of a factitious military network consisting of three ‘target’
machines running various operating systems and services.



Additional three machines are then used to spoof different
IP addresses, thus generating traffic between different IP
addresses. Finally, there is a sniffer that records all network
traffic using the TCP dump format. The total simulated
period is seven weeks. Normal connections are created to
profile that expected in a military network and attacks fall
into one of five categories: User to Root; Remote to Local;
Denial of Service; Data; and Probe. Note that User to Root
and Remote to Local can represent content-based attacks,
and may therefore only be detected indirectly by the type of
system developed in this work (e.g. guessing passwords
often manifests itself as multiple attempted login’s between
the same source destination pair).

In 1999 the original TCP dump files were preprocessed
for utilization in the Intrusion Detection System benchmark
of the International Knowledge Discovery and Data Mining
Tools Competition [2]. To do so, packet information in the
TCP dump file are summarized into connections.
Specifically, “a connection is a sequence of TCP packets
starting and ending at some well defined times, between
which data flows from a source IP address to a target IP
address under some well defined protocol” [8]. This process
is completed using the Bro IDS [9], resulting in nine “Basic
features of an Individual TCP connection” [8]; hereafter
referred to as ‘basic features’,
¢ Duration of the connection;

* Protocol type, such as TCP, UDP or ICMP;

* Service type, such as FTP, HTTP, Telnet;

e Status flag, derived by Bro to describe a connection;

* Total bytes sent to destination host;

* Total bytes sent to source host;

*  Whether source and destination addresses are the same
or not;

*  Number of wrong fragments;

*  Number of urgent packets;

Note that only Protocol and Service features are not
derived i.e. they are estimated immediately as opposed to
after a connection has completed. Moreover, the above
‘status flag’ should not be confused with the TCP/IP suit
flags. Finally, last three features are specific to certain attack
types (no variation is observed across the normal data in the
training set), hence these terms were ignored in this work.

In addition to the above nine °‘basic features,” each
connection is also described in terms of an additional 32
derived features, falling into three categories,

*  Content Features: Domain knowledge is used to assess
the payload of the original TCP packets. This includes
features such as the number of failed login attempts;

*  Time-based Traffic Features: These features are
designed to capture properties that mature over a 2
second temporal window. One example of such a
feature would be the number of connections to the
same host over the 2 second interval;

*  Host-based Traffic Features: Utilize a historical
window estimated over the number of connections — in
this case 100 — instead of time. Host based features are
therefore designed to assess attacks, which span
intervals longer than 2 seconds.

In this work, none of these additional features are
employed.

2) Hierarchical SOM:

As in our earlier work, a hierarchical SOM architecture is
employed [6]. Our basic motivation is to steadily build
more abstract features as the number of SOM layers
increase. That is to say, our hypothesis is that features learnt
at the initial layers of a hierarchy may still be interpreted in
terms of recognizable basic measured properties, whereas
features at the highest level in the architecture will capture
aspects synonymous with normal or attack behaviors.
Specifically, three layers are employed. In the first,
individual SOMs are associated with each basic TCP
feature. This provides a concise summary of the interesting
properties of each basic feature, as derived over a suitable
temporal horizon. The second layer integrates the views
provided by the first level SOMs into a single view of the
problem. At this point, we use the training set labels
associated with each pattern to label the respective best
matching unit in the second layer. The third and final layer
is built for those neurons, which win for both attack and
normal behaviors. This results in third layer SOMs being
associated with specific neurons in the second layer.
Moreover, the hierarchical nature of the architecture means
that the first layer may be trained in parallel and the third
layer SOMs are only trained over a small fraction of the data
set.

3) Preprocessing and Clustering

In order to build the hierarchical SOM architecture,
several data normalization operations are necessary, where
these are for the purposes of preprocessing and inter-layer
‘quantization’ of maps. Preprocessing has two basic
functions, to provide a suitable representation for the initial
data and support the representation of time. In the case of
initial data representation, three of the basic features —
Protocol type, Service type and Status flag — are
alphanumeric. As the first SOM layer treats each feature
independently, we merely map each instance of an
alphanumeric character to sequential integer values.
Numerical features — connection duration, total bytes set to
destination/ source host — are used unchanged.

In the case of representing time, the standard SOM used
here has no capacity to recall histories of patterns directly.
However, sequence as opposed to time stamp, is the
property of significance in this work [6]. A shift register of
length ‘I’ is therefore employed in which a ‘tap’ is taken at a
predetermined repeating interval ‘¢’ such that /% ¢ = 0,
where % is the modulus operator. The first level SOMs
only receive values from the shift register that correspond to
tap locations. Thus, as each new connection is encountered
(enters at the left), the content of each shift register location
is transferred one location (to the right), with the previous
item in the /th location being lost.

The requirement for ‘quantization’ occurs between the
first and second level SOMs. Specifically, the purpose of
the second level SOM is to provide an integrated view of
the input feature specific SOMs developed in the first layer.
There is therefore the potential for each neuron in the second
layer SOM to have an input dimension defined by the total



neuron count across all first layer SOM networks. This
would be a brute force solution that does not scale
computationally (there are half a million training set
patterns). Moreover, given the topological ordering provided
by the SOM, neighboring neurons will respond to similar
stimuli. We therefore quantize the topology of each first
layer SOM in terms of a fixed number of neurons and re-
express the first layer best matching units in terms of these.
This significantly reduces the dimension seen by neurons in
the second layer SOM.

III. LEARNING ALGORITHMS

Two learning algorithms are used to build the
hierarchical SOM architecture. The first is used to train each
SOM in the hierarchy [10]. The second is a clustering
algorithm that is used to quantize the number of SOM
neurons ‘perceived’ by the second layer. In the latter case the
Potential Function algorithm is employed [11]. These are
briefly summarized as follows.

A. Self-Organizing Feature Map

Kohonen’s Self-Organizing Feature Map (SOM)
algorithm is an unsupervised learning algorithm in which an
initially ‘soft’ competition takes place between neurons to
provide a topological arrangement between neurons at
convergence [10]. The learning process is summarized as
follows,

1. Assign random values to the network weights, w;;

2. Present an input pattern, x, in this case a series of taps
taken from the shift register providing the
‘reconstruction’ state space on which the SOM is to
provide a suitable quantized approximation.

3. Calculate the distance between pattern, x, and each
neuron weight w;, and therefore identify the winning
neuron, or

@ =minte-w g

where ||| is the Euclidean norm and w; is the weight
vector of neuron j;
4. Adjust all weights in the neighborhood of the winning
neuron, or
W, (e +1) = w, () +nOK GO F 0 = w, (O] @
where n(7) is the learning rate at epoch ¢#; and K(j, 7) is a
suitable neighborhood function;
5. Repeat steps (2) — (4) until the convergence criterion is
satisfied.
Following convergence, presentation of an input vector,
x, results in a corresponding output vector, d, the Euclidian
distance between each neuron and input. The neuron with
the smallest distance represents the winning or best
matching neuron, step (3). The best matching neuron also
defines a neighborhood of next nearest neighboring neurons.
Once the maps are trained, it is this concept of a best
matching node that is used to facilitate the labeling of the
second and third level maps.

B. Potential Function Clustering

The Potential Function Clustering algorithm consists of
four steps [11],

1. Identify the potential of each data point relative to all
other data points. All data points represent candidate
cluster centers;

2. Select the data point with largest potential and label as
a cluster center;

3. Subtract the potential of the data point identified at step
(2) from all others and remove this point from the list
of candidate cluster centers;

4. Repeat on step (2) until the end criterion is satisfied.

In this application, the set of data points correspond to
the set of neurons in each (first layer) SOM, where the
weights of each neuron describe a neuron position in terms
of the original input space. Step 1 characterizes neurons in
terms of how close they are to others. A neuron with many
local neighbors should have a high ‘potential’ as expressed
by a suitable cost function, or

B = Sexplawiy -wl

where w(j) is the j’th SOM neuron, P,(w(j)) is the potential
for such neuron at iteration ¢, M is the number of data
points (in this case SOM neurons), and o is the cluster
radii.

Step 2 identifies a candidate cluster center (SOM neuron)
by choosing the point with largest potential P,(x*). Step 3
removes the influence of the chosen neuron from the
remaining (unselected) set of SOM neurons. That is, the
remaining neurons have their respective potentials decreased
by a factor proportional to the distance from the current
cluster center, or

P, (w(;)) = B(w()))
- Poexple Bl -

where ¢ + 1 is the index of the updated potential at iteration
t; w* is the data point associated with the current cluster
center, and f is the cluster radii (o < f3).

The result of step 3 is the labeling of a specific SOM
neuron as a cluster center. Step 4 iterates the process in
conjunction with some suitable stop criterion. In this case,
we stop when six cluster centers are identified, where the
alpha and beta values are set accordingly. That is to say,
further cluster centers correspond to points with a potential
value less than 10% of the first potential located. The net
effect of this process is therefore that each of the six first
layer SOMs are characterized in terms of 6 clusters,
resulting in a total of 36 inputs to the second level SOM.

Once the 6 cluster centers are identified for each SOM,
representing the ‘quantized” SOM output, we normalize as
follows,

__
YT -

where w is the cluster center and x is the original SOM
input.



The second layer SOM now receives a vector, y, of the
form,
Yy=Wis ., 16 Y21, ..y yijl
where i is the SOM index and ;j is the cluster (neuron)
index.

IV. RESULTS

In all cases the SOM Toolbox and SOM-PAK were
employed for the design of each SOM comprising the SOM
hierarchy [12]. In the following we describe the dataset,
training procedure and evaluation of the proposed
architecture.

A. KDD-99 Dataset

The KDD-99 data consists of several components, Table
I. As in the case of the International Knowledge Discovery
and Data Mining Tools Competition, only the ‘10% KDD’
data is employed for the purposes of training [2]. This
contains 24 attack types and is essentially a more concise
version of the ‘Whole KDD’ dataset. One side effect of this,
is that it actually contains more examples of attacks than
normal connections. Moreover, the attack types are not
represented equally, with Denial-of-Service attack types — by
the very nature of the attack type — accounting for the
majority of the attack instances. However, both test sets
contain an additional 14 (unseen) attacks. The so-called
‘Corrected (Test)’ dataset provides a dataset with a
significantly different statistical distribution than either
‘10% KDD’ or ‘Corrected (Test)’.

TABLE I
BAsIC CHARACTERISTICS OF THE KDD DATASET

Dataset label Total Attack Total Normal

10% KDD 396,744 97,277
Corrected (Test) 250,436 60,593
Whole KDD 3,925,651 972,780

B. Training

Learning parameters for the SOMs are summarized in
Table II, where this process is repeated for each SOM
comprising the hierarchy. In each case, training is completed
in two stages, the first providing for the general
organization of the SOM and the second for the fine-tuning
of neurons. Table III summarizes the additional parameters
utilized by the shift register and Potential Function
clustering algorithm. The resulting SOM hierarchy consists
of 6 SOM networks in the first layer (temporal encoding),
each consisting of 6x6 grid and 20 inputs. Potential
Function clustering ‘quantizes’ each original first layer
SOM to six neurons using the process described in Section
III.B, resulting in 36 inputs to the second layer SOM
(responsible for integration). Once training of the second
layer is complete, labeling takes place. That is, for each
connection in the training set, the corresponding label is
given to the best matching unit in the second layer. A count
is kept for the number of normal and attack connections
each best matching unit receives. Third layer SOMs are
built for second layer SOM neurons that demonstrate
significant counts for both attack and normal connections,
Section IV.C. This results in 6 third layer SOMs being
built on top of specific second layer neurons. In each case
third layer SOMs consist of 20 x 20 neurons, where a larger
neuron count is utilized in the third layer in order to
increase the likelihood of separation between the two
connection types. Moreover, only connections for which the
corresponding second layer SOM is the best matching unit
are used to train third layer SOMs, facilitating the use of
larger SOMs without experiencing a high computational
overhead. Finally, in each case, the inputs to the third level
SOMs correspond to the 36-element vector of ‘quantized’
first layer outputs.

TABLE 11
SOM TRAINING PARAMETERS

Parameter Rough Training Fine Tuning
Initial n 0.5 0.05
1 decay scheme flepoch™)
Epoch Limit 4,000
Neighborhood Parameters
Initial Size 2 1
Function Gaussian
Relation Hexagonal
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(For each feature respectively)

o e-0, e-3, 2e-7, e-6, 16e-7, 0.1599015,  Length 96
2e-2, 2e-2, e-2, 4e-2, e-1, e-2 # Taps 20
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C. Evaluation
Performance of the classifier is evaluated in terms of the
false positive and detection rates, estimated as follows,

. Number of Skipped Connections
Skipped Rate = i

Total number of Connections

. Number of False Positives
False Positive Rate -
_ Total number of Normal Connections

Number of False Negatives
Total number of Attack Connections

Detection Rate = 1 —

Where False Positive (Negative) Rate is the number of
Normal (Attack) connections labeled as Attack (Normal).

Attack

Figure 2: Third level map on top of second level map’s neuron
36

On completion of training at the third level maps, a clear
separation between normal and attack was achieved. Figure
2 illustrates this property for the case of neuron 36. In this
case, it is clear that the normal connections all reside in the
top left corner of the map, whereas the attack connections
populate the remainder. Finally, the larger SOMs utilized in
the third layer could result in neurons that remain unlabeled.
These are listed as ‘skipped’ in the following analysis of
test set performance.

TABLE IV

COUNT OF ATTACK AND NORMAL CONNECTIONS PER 2" LAYER CANDIDATE
NEURON

Neuron Normal Attack

4 2,177 2,613
17 2,051 3,151
18 1,731 1,706
Fig. 1. Hit histogram of the second level map. 23 2,304 3,204
Figure 1 izes th t of attack and I 30 2,453 5,292
igure 1 summarizes the count of attack and norma 36 1688 45440
connections in the second level SOM; where proportionally 2 ?
larger counts result a greater area of the hexagon being
colored. It is apparent that nodes 1, 32 and 36 account for TABLEV
most of the attack connections and neuron 19 most of the TEST SET RESULTS
normal connections. It is also apparent that several neurons Corrected (Test)
also respond to both normal and attack connections. To this Network level — Skipped FP rate Detection rate
end neurons 4, 17, 18, 23, 30 and 36 are selected for Level 2 0% 7.6 % 90.6 %
association with third level SOMs, one for each second Level 3 0.7 % 4.6 % 89 %
layer neuron, where Table IV details the respective counts of Whole KDD
normal and attack connections. Level 3 0.06 % 1.7% 99.7%

Table V details test set performance for the case of a two
layer and three layer hierarchy on the ‘Corrected (Test)” KDD
data set and the three-layer hierarchy on the ‘whole KDD’ test



set. The superiority of the three-layer architecture is again
demonstrated. Finally, performance of the two-layer and
three-layer hierarchy on corrected test set for different
categories is summarized in Table VI, whereas the
performance on new attacks in ‘Corrected Test’ set is detailed
in Table VIIL. It is readily apparent that as the hierarchical
SOM approach is only utilizing ‘basic features’ (i.e. none of
the content-based features are employed), performance on
network-based attack categories (DoS, Probe) is naturally
much better than that on content-based categories (U2R,
R2L).

TABLE VI
DETECTION RATE OF NEW ATTACKS FOR 2-LAYER AND 3-LAYER HIERARCHY
Normal DoS Probe U2R R2L
Level 2 92.4 96.5 72.8 22.9 11.3
Level 3 95.4 95.1 64.3 10.0 9.9
TABLE VII
DETECTION RATE OF NEW ATTACKS FOR 2-LAYER AND 3-LAYER HIERARCHY
Attack Name Level 2 Level 3
Apache2. 90.3 90.7
httptunnel. 58.9 20.9
mailbomb. 7.8 6.8
mscan. 90.2 60.9
named. 23.5 0.0
processtable. 59.4 47.6
ps. 0.0 0.0
saint. 79.1 78.7
sendmail. 5.9 11.8
snmpgetattack. 11.5 10.3
udpstorm. 0.0 0.0
xlock. 0.0 0.0
XSnoop. 0.0 0.0
xterm. 23.1 30.8
TABLE VIII
RECENT RESULTS ON THE KDD BENCHMARK
Technique Detection Rate FP Rate
Data-Mining [5] 70-90% 2%
Clustering [4] 93% 10%
K-NN [4] 91% 8%
SVM [4] 98% 10%

Table VIII provides a summary of some recent results
from alternative approaches trained on the KDD-99 dataset
and tested using the ‘Corrected (Test)’ data [4, 5]. Detection
rates are very similar to those reported for the SOM
hierarchy constructed here. However, there are actually
several additional factors with which these results need to be
interpreted. Firstly, all the data mining approaches are based
on all 41 features; the SOM hierarchy only utilizes 6.
Secondly, in the case of [4], figures quoted are for a mixture
of specific and multiple attack types, making it difficult to

determine performance over the entire dataset. Thirdly, use
was also made of Host based information, thus providing an
advantage when detecting content based attacks [4].

V. CONCLUSION

A hierarchical SOM approach to the IDS problem is
proposed and demonstrated on the International Knowledge
Discovery and Data Mining Tools Competition intrusion
detection benchmark [2]. Specific attention is given to the
representation of connection sequence (time) and the
hierarchical development of abstractions sufficient to permit
direct labeling of SOM nodes with connection type. Other
than these two concepts, no additional use of a priori
information is employed. In comparison to data mining
approaches currently proposed, the approach provides
competitive performance whilst utilizing a fraction of the
feature set (6 of the 9 “Basic features of an Individual TCP
connection” and none of the 32 additional higher-level
derived features).

It is anticipated that future work will investigate the
utilization of such a scheme within the context of a
distributed solution to the IDS problem.
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